CONTENTS

Pref	ace	xii:
Part	I HOMOGENEOUS BOUNDARY VALUE PROBLEMS AND SPECIAL FUNCTIONS	
1.	THE PARTIAL DIFFERENTIAL EQUATIONS	
	OF MATHEMATICAL PHYSICS	1
	1.1 Introduction	1
	1.2 Heat Conduction and Diffusion	1 1 2 4
	1.3 Quantum Mechanics	4
;	1.4 Waves on Strings and Membranes	5 7 9
	1.5 Hydrodynamics and Aerodynamics	7
	1.6 Acoustic Waves in a Compressible Fluid	
;	1.7 Irrotational Flow in an Incompressible Fluid	11
	1.8 Electrodynamics	14
	a) Time Independent Phenomena	15
	b) Vacuum Equations	18
	c) General Case	18
	1.9 Summary	21
]	Problems	23
2.	SEPARATION OF VARIABLES AND ORDINARY	
	DIFFERENTIAL EQUATIONS	28
:	2.1 Introduction	28
:	2.2 Separation of Variables	29
:	2.3 Rectangular Coordinates (x,y,z)	30
	2.4 Cylindrical Coordinates (r, θ, z)	32
:	2.5 Spherical Coordinates (r, θ, φ)	34
:	2.6 Series Solutions of Ordinary Differential	
	Equations: Preliminaries	38
;	2.7 Expansion About a Regular Singular Point	43
:	2.8 Sturm Liouville Eigenvalue Problem	49
:	2.9 Fourier Series and Integrals	58
:	2.10 Numerical Solution of Ordinary	
	Differential Equations	61
7	Problems	67

viii CONTENTS

3.	SPHERICAL HARMONICS AND APPLICATIONS	74
	3.1 Introduction	74
	3.2 Series Solution of Legendre's Equation -	
	Legendre Polynomials	75
	3.3 Properties of Legendre Polynomials	81
	3.4 The Second Solution Q (x) of	
	Legendre's Equation	88
	3.5 Associated Legendre Polynomials	92
	3.6 Spherical Harmonics	96
	3.7 The Spherical Harmonics Addition Theorem	99
	3.8 Multipole Expansions	103
	3.9 Laplace's Equation in Spherical Coordinates	108
	1) Interior Problem	110
	2) Exterior Problem	112
	3) Region Between Two Spheres	112
	3.10 Conducting Sphere in a Uniform External	
	Electric Field	113
	3.11 Flow of an Incompressible Fluid Around	
	a Spherical Obstacle	115
	Problems	118
4.	BESSEL FUNCTIONS AND APPLICATIONS	122
	4.1 Introduction	122
	4.2 Series Solutions of Bessel's Equation;	
	Bessel Functions	123
	4.3 Neumann Functions	126
	4.4 Small Argument and Asymptotic Expansions	132
	4.3 Bessel Functions of Imaginary Argument	134
	4.0 Laplace's Equation in Cylindrical Coordinates	135
	4. / Interior of a Cylinder of Finite Length	136
	4.6 The Sturm Liouville Eigenvalue Problem	
	and Expansion Theorem	139
	4.9 Interior of a Cylinder of Finite Length -	
	Continued	141
	4.10 Exterior of an Infinitely Long Cylinder	144
	4.11 Cylinder in an External Field	145
	4.12 Space Between Two Infinite Planes	147
	4.13 Fourier Bessel Transforms	149
	4.14 Space Between Two Infinite Planes - Continued Problems	151
	Problems	152
5.	NORMAL MODE EIGENVALUE PROBLEMS	154
	5.1 Introduction	154
	5.2 Reduction of the Diffusion Equation and Wave	エンサ
	Equation to an Eigenvalue Problem	155
	5.3 The Vibrating String	161
	5.4 The Vibrating Drumhead	162

CONTENTS ix

	5.5	Heat Conduction in a Cylinder of	
		Finite Length	166
	5.6	Particle in a Cylindrical Box	
		(Quantum Mechanics)	168
	5.7	Normal Modes of an Acoustic Resonant Cavity	168
		Acoustic Wave Guide	170
	Prob:	lems	174
6.	SPHE	RICAL BESSEL FUNCTIONS AND APPLICATIONS	177
		Introduction	177
	6.2	Formulas for Spherical Bessel Functions in	
		Terms of Elementary Functions	178
	6.3	Eigenvalue Problem and Expansion Theorem	184
	6.4	Expansion of Plane and Spherical Waves in	
		Spherical Coordinates	187
	6.5	The Emission of Spherical Waves	192
	6.6		197
	Prob.	lems	204
Part	: I S	SUMMARY OF PART I	207
Part		INHOMOGENEOUS PROBLEMS, GREEN'S FUNCTIONS,	
	1	AND INTEGRAL EQUATIONS	
7.	DIEL	ECTRIC AND MAGNETIC MEDIA	218
	7.1	Introduction	218
	7.2	Macroscopic Electrostatics in the	
		Presence of Dielectrics	219
	7.3	Boundary Value Problems in Dielectrics	229
		1) Free Charge Distribution ρ_F Embedded in an	
		Infinite Uniform Dielectric with a Constant	000
		Dielectric Constant 6	229
		2) Point Charge in Front of a Semi-infinite	220
		Dielectric	230
		3) Dielectric Sphere in a Uniform External Electric Field	233
	7 /		233
	7.4	Magnetostatics and the Multipole Expansion for the Vector Potential	235
	7.5	Magnetic Media	241
	7.6	Boundary Value Problems in Magnetic Media	247
	7.0	1) Uniformly Magnetized Sphere, M Given	247
		2) Magnetic Sphere in a Uniform External	
		Magnetic Field	250
		3) Long Straight Wire Carrying Current I	
		Parallel to a Semi-infinite Slab of	
		Material of Permeability u	253
	Probl	• "	255

x CONTENTS

8.	CDFFN	N'S FUNCTIONS	258
٥.	Q 1	Introduction	258
	8. 2		259
	8.3	General Theory, Various Boundary Conditions	260
	0. 5	1) u(a) and u(b) Given	261
		2) $u(a)$ and $du(x)/dx _{x=b}$ Given	261
		3) $Au(a) + Bu'(a) = X$ Given and	
		Cu(b) + Du'(b) = Y Given	262
	8.4	The Bowed Stretched String	265
	8.5	Expansion of Green's Function in Eigenfunctions	
	8.6	Poisson's Equation	272
	0.0	a) $\psi(\vec{r}^1)$ Given on S	273
		b) $\partial \psi(\vec{r}')/\partial n'$ Given on S	274
	8.7		276
	8.8		
	0.0	Surfaces at Finite Distances — The Image Method	276
	8.9	Expansion of the Green's Function for the	
	0. 7	Interior of a Sphere in Series	279
	0 10	The Helmholtz Equation — The Forced Drumhead	283
		Eigenfunction Expansion of Green's Function	
	0. 11	for the Helmholtz Equation	289
	9 12	The Helmholtz Equation for Infinite Regions,	-0,
	0. 12	Radiation, and the Wave Equation;	
		Sinusoidal Time Dependence	291
	g 13	General Time Dependence	295
		The Wave Equation	299
		The Wave Equation for All Space, No	
	0. 13	Boundaries at Finite Distances	304
	8.16	Field Due to a Point Source	311
	0.10	1) Point Source Moving with Constant	
		Velocity, v < c	314
		2) Point Source Moving with Constant	
		Velocity, v>c	315
	8.17	The Diffusion Equation	319
		The Diffusion Equation for All Space, No	
		Boundaries at Finite Distances	322
	Prob	1ems	327
			
9.	INTE	GRAL EQUATIONS	335
	9.1		335
	9. 2		336
	9.3		341
		1) First Kind	341
		2) Second Kind	341
		3) Volterra	341
		4) Eigenvalue Problem	341

CONTENTS xi

9.5 (9.6] 9.7 M 9.8 H 9.9 (Integral Equations with Separable Kernels Convolution Integral Equations Iteration-Liouville Neumann Series Numerical Solution Fredholm's Formulas Conditions for Validity of Fredholm's Formulas Hilbert Schmidt Theory	342 347 348 351 356 363 368 375
Part III (COMPLEX VARIABLE TECHNIQUES	
10. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EX VARIABLES; BASIC THEORY Introduction Analytic Functions; The Cauchy-Riemann Equations Power Series Multivalued Functions; Cuts; Riemann Sheets Contour Integrals; Cauchy's Theorem Cauchy's Integral Formula	383 383 385 394 402 417 426 428
10.7 10.8 Problem	Taylor and Laurent Expansions Analytic Continuation ns	435 443
11. 1 11. 2 11. 3 11. 4 11. 5 11. 6 11. 7	ATION OF INTEGRALS Introduction The Residue Theorem Rational Functions (-∞,∞) Exponential Factors; Jordan's Lemma Integrals on the Range (0,∞) Angular Integrals Transforming the Contour Partial Fraction and Product Expansions ms	448 448 451 453 459 462 464 473
12. 1 12. 2 12. 3 12. 4 12. 5	RSION RELATIONS Introduction Plemelj Formulas; Dirac's Formula Discontinuity Problem Dispersion Relations; Spectral Representations Examples Integral Equations with Cauchy Kernels ms	475 476 479 481 493 499 506
13.1 13.2 13.3 13.4	AL FUNCTIONS Introduction The Gamma Function Asymptotic Expansions; Stirling's Formula The Hypergeometric Function Legendre Functions	507 507 508 513 519 533

xii CONTENTS

	Bessel Functions	541
	Asymptotic Expansions for Bessel Functions	552
Prob.	lem s	561
14. INT	EGRAL TRANSFORMS IN THE COMPLEX PLANE	564
14.1	Introduction	564
14.2	The Calculation of Green's Functions by	
	Fourier Transform Methods	566
	a) The Helmholtz Equation	566
	b) The Wave Equation	570
	c) The Klein Gordon Equation	573
14.3	One-Sided Fourier Transforms;	
	Laplace Transforms	581
14.4	Linear Differential Equations with Constant	
	Coefficients	588
14.5	Integral Equations of Convolution Type	590
	Mellin Transforms	590
14.7	Partial Differential Equations	592
	The Wiener-Hopf Method	596
	1) Potential Given on Semi-Infinite Plate	597
	2) Diffraction by a Knife Edge	604
Prob:		618
Bibliog	raphy	621
Index		625