| LIST OF FORTRAN IV PROGRAMS LIST OF NUMERICAL APPLICATION EXAMPLES Chapter 1: INTRODUCTION TO FOURIER TRANSFORMATION 1.1 Introduction 1.2 Definitions 1.3 Basic theorems 1.4 Some useful transform pairs 1.5 Bandlimited functions Problems Chapter 2: DISCRETE FOURIER TRANSFORMATION 2 1 Introduction | је | |---|----------------------| | LIST OF FORTRAN IV PROGRAMS LIST OF NUMERICAL APPLICATION EXAMPLES Chapter 1: INTRODUCTION TO FOURIER TRANSFORMATION 1.1 Introduction 1.2 Definitions 1.3 Basic theorems 1.4 Some useful transform pairs 1.5 Bandlimited functions Problems Chapter 2: DISCRETE FOURIER TRANSFORMATION 2 1 Introduction | Li | | LIST OF NUMERICAL APPLICATION EXAMPLES Chapter 1: INTRODUCTION TO FOURIER TRANSFORMATION 1.1 Introduction 1.2 Definitions 1.3 Basic theorems 1.4 Some useful transform pairs 1.5 Bandlimited functions Problems Chapter 2: DISCRETE FOURIER TRANSFORMATION 2 1 Introduction | Li | | 1.1 Introduction 1.2 Definitions 1.3 Basic theorems 1.4 Some useful transform pairs 1.5 Bandlimited functions Problems Chapter 2: DISCRETE FOURIER TRANSFORMATION 2 1 Introduction | ۲V | | 1.2 Definitions 1.3 Basic theorems 1.4 Some useful transform pairs 1.5 Bandlimited functions Problems Chapter 2: DISCRETE FOURIER TRANSFORMATION 2 1 Introduction | 1 | | Problems Chapter 2: DISCRETE FOURIER TRANSFORMATION 2 1 Introduction | 1
4
11 | | 2 1 Introduction | 22 | | 2 1 Introduction | 31 | | 2.2 Definitions | 31
31 | | and Fourier series 2.4 Fast Fourier transform (FFT) algorithms 2.5 Basic theorems of DFT | 34
47
60
71 | | 2.6.1 Sampling time-limited function of time 2.6.2 Sampling bandlimited function of frequency 2.6.3 Insertion of zeroes to data sampled in time 2.6.4 Insertion of zeroes to data sampled in frequency | 71
73
74
75 | | 2.6.5 Bandlimited interpolation2.6.6 Time-limited interpolation | 76
77 | | 2.7 Linear convolution and linear correlation 2.8 Discrete energy spectrum | 79
80 | | Problems | 82 | | Chapter 3: POWER SPECTRA ESTIMATION USING DFT | 93 | | 3.1 Introduction3.2 Two basic methods of power spectra estimation | 93
94 | | 3.2.1 Indirect method 3.2.2 Direct method 3.2.3 Some additional observations on spectra estimation methods | 95
98
.04 | | | .05 | | 3.4 Power spectra estimation using DFT | .19 | | 3.4.1 Indirect method using DFT | .19
.26
.30 | | 3.5 Discrete data and spectral windows 3.6 Average and short-time spectral analysis of | 132
151 | ## xii CONTENTS | 3.7 Harmonic analysis of periodic and periodic-like
signals using DFT | 159
159 | |---|---------------------------------| | Problems | 164 | | Appendix A: FOURIER SPECTRAL DENSITY | 183 | | Appendix B: EXAMPLES OF POWER SPECTRA ESTIMATION USING DFT | 191 | | B.l Introduction B.2 Finite energy signals B.3 Periodic and periodic-like signals B.4 Stationary random processes B.5 Non-stationary random processes | 191
192
211
238
258 | | REFERENCES | 327 | | LIST OF PRINCIPAL SYMBOLS | 331 | | AUTHOR INDEX | 333 | | SUBJECT INDEX | 335 |