Contents

1

PREFACE xi

Reflections 1

	1.2	Mathematical Programming Problems 2
	1.3	Varieties and Characteristics of Mathematical Programs 4
	1.4	Some Example Formulations 7
	1.5	Difficulties Caused by Nonlinearity 13
	1.6	Historical Outline 17
	1.7	Preview of the Text 19
		Exercises 20
2.	REVIEV	V OF LINEAR PROGRAMMING 26
	2.1	Introduction 26
	2.2	Taylor's Theorem 27

INTRODUCTION TO NONLINEAR PROGRAMMING

vi Contents

2.3	Notes from Linear Algebra 35	
2.4	The Simplex Method 37	
2.5	The Dual Problem 45	
2.6	The Duality Theorem 49	
2.7	The Existence Theorem and Complementary Slackness 54	
2.8	Interpretations of Duality 57	
	Exercises 64	
FURTI	HER MATHEMATICAL BACKGROUND 71	
3.1	Introduction 71	
3.2	Maxima and Minima 71	
3.3	Quadratic Forms 75	
3.4	Convex and Concave Functions 80	
3.5	Convex Feasible Regions and Optimal Solutions 86	
3.6	Alternate Characterizations of Convex and Concave Functions 91	
	Exercises 96	
CLASS	SICAL UNCONSTRAINED OPTIMIZATION 101	
4.1	Varieties of Mathematical Programs 101	
4.2	Unconstrained Optimization 103	
4.3	Simultaneous Nonlinear Equations 110	
4.4	The Gradient Vector 113	
4.5	Direct Climbing Algorithms 115	
4.6	Convergence of Direct Climbing Algorithms 118	
4.7	The Optimal Gradient Method 122	
4.8	Computing the Step Length in the Optimal Gradient Method 127	
4.9	Modifications to the Optimal Gradient Method 135	

3.

Contents vii

	4.10	Newton's Method 138 Exercises 143
5.	OPTIN	MUM-SEEKING BY EXPERIMENTATION 147
	5.1	Experimental Seeking 147
	5.2	Quasi-Concave and Quasi-Convex Functions 150
	5.3	Simultaneous Search Strategies for One-Variable Problems 152
	5.4	Sequential Search Strategies for One-Variable Problems 156
	5.5	Strategies for Multi-Variable Search 162
		Exercises 166
6.		RANGE MULTIPLIERS AND N-TUCKER THEORY 169
	6.1	Constrained Optimization Theory 169
	6.2	Lagrange Multipliers: Some Heuristic Geometry 170
	6.3	Lagrange Multipliers: An Algebraic Derivation 174
	6.4	Examples and Computational Remarks 177
	6.5	Interpretation of Lagrange Multipliers 179
	6.6	Inequality Constraints 181
	6.7	Heuristic Description of Kuhn-Tucker Conditions 183
	6.8	The Feasible Region and Constraint Qualification 187
	6.9	The Kuhn-Tucker Necessary Conditions 192
	6.10	Application to Linear Programming 197
	6.11	Sufficiency of the Kuhn-Tucker Conditions 201
	6.12	The Lagrangian Function and Saddle Points 202
	6.13	Saddle Points and Optimal Solutions 204
		Exercises 209

viii Contents

7.	QUAD	PRATIC PROGRAMMING 217
	7.1	Linearly Constrained Problems and Quadratic Objectives 217
	7.2	The Quadratic Program: Examples and Applications 219
	7.3	Wolfe's Algorithm 224
	7.4	Convergence of Wolfe's Algorithm in the Negative Definite Case 229
	7.5	An Example 236
	7.6	The Method of Beale 242
	7.7	An Example 249
	7.8	Lemke's Algorithm 258
	7.9	An Example 267
	7.10	Computational Considerations in Quadratic Programming 269
		Exercises 273
8.		ORITHMS FOR ARLY CONSTRAINED PROBLEMS 280
	8.1	Introduction 280
	8.2	Separable Programming: the Approximating Problem 281
	8.3	Convex Separable Programming 288
	8.4	Separable Programming with Restricted Basis Entry 294
	8.5	The Convex Simplex Method 297
	8.6	An Example 305
	8.7	The Reduced Gradient Method 312
	8.8	Degeneracy in Linearly Constrained Problems 317
	8.9	Methods of Feasible Directions 320
	8.10	Determination of the Direction Vector 328

The Gradient Projection Method

331

Contents ix

Geometry, Computations, and an Example 338

onvergence of Feasible-Directions Algorithms 350
xercises 359
HMS FOR ARLY CONSTRAINED PROBLEMS 371
ARLY CONSTRAINED PROBLEMS 677
onlinearity in the Constraints 371
eparable Programming 372
elley's Cutting-Plane Method 378
outendijk's Feasible-Directions Method 388
igzagging and the ϵ -Perturbation Method 397
rimal Nonlinear Programming Algorithms: Summary 401
equential Unconstrained Optimization: arrier Methods 404
Computational Aspects of ne Barrier Algorithm 412
Convex Programs, Duality, and ne Barrier Algorithm 416
enalty Methods 422
Conclusion 432
Exercises 433

REFERENCES 441

INDEX 444

8.12