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Boltzmann Equation

Summary. We review some of the general properties of the semiclassical Boltzmann
equation - not necessarily restricting ourselves to the dilute electron gas - paying
special attention to its irreversible properties.

1.1 Heuristic Derivation
of the Semiclassical Boltzmann Equation

The kinetic theory of Boltzmann which connects the regime of dynamics
with that of thermodynamics has been a milestone in the development of
theoretical physics. In order to describe the kinetics of, e.g., an atomic gas,
Boltzmann [51] introduced, with great intuition, more than half a century
before the rise of quantum mechanics, a probabilistic description for the evo-
lution of a single-particle distribution which anticipated atomistic scattering
concepts. Boltzmann introduced a single-particle probability distribution in
the phase space of the canonical variables r and p. This Boltzmann distri-
bution function is usually denoted as f(r,p, t). Obviously, this object is clas-
sical, because in quantum mechanics r and p are noncommuting operators
so that they cannot be simultaneously measured with arbitrary precision. We
will analyze in the following chapter how this conceptual difficulty affects
the limits of validity of the Boltzmann equation. Here we will first present
a heuristic derivation of the semiclassical Boltzmann equation. Later in this
book we will pay special attention to the more detailed quantum mechanical
justifications of the Boltzmann kinetics, present discussions of the limits of
this semiclassical theory, and, most importantly, derive and study the quan-
tum kinetics which has to be used instead of the Boltzmann kinetics on small
length and/or short timescales. In the framework of the classical Hamilton
theory the total change in time of this distribution function is
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∂t

∣
∣
∣
coll
, (1.1)

where V (r) is a single-particle potential. The left-hand side of (1.1) describes
the dynamics of a single particle. The influence of the other particles will give
rise to a further change of the distribution function ∂f/∂t|coll which describes
the effect of the collisions in the gas. We will not proceed historically, but
include directly the proper quantum statistics for quantum gases, so that
we are not limited to nondegenerate gases. This extension is necessary for
the application of the Boltzmann kinetics to electron gases in semiconductors
which are often degenerate, whether they are produced by doping, injection, or
optical excitation. Fermi’s golden rule gives us the transition probability per
unit time and thus the wanted change of f due to collisions. For an interacting
Fermi gas we calculate this change by considering approximately free-particle
collisions in which the particle is scattered from a momentum state p to a
momentum state p′ and simultaneously another particle is scattered from
state p1 to p′

1, as well as the inverse process

∂f(p)
∂t

∣
∣
∣
coll

= −
∑

p′,p1,p′
1

w(p,p1; p′,p′
1)
{

f(p)f(p1)[1 − f(p′)][1 − f(p′
1)]

− [1 − f(p)][1 − f(p1)]f(p′)f(p′
1)
}

, (1.2)

where the intrinsic transition probalility per unit time is given by

w(p,p1; p′,p′
1) = 1

2 |Wp,p1;p′,p′
1
−Wp,p1;p′

1,p
′ |2

× δp+p1,p′+p′
1

2π
h̄
δ(εp + εp1 − εp′ − εp′1) . (1.3)

Here

Wp,p1;p′,p′
1

= 〈pp1|W |p′p′
1〉 (1.4)

is the interaction matrix element and εp is the energy of the particle. The
second matrix element in (1.3) is the exchange term in which p′

1 and p′ are
interchanged. This form of the intrinsic transition probability is called the first
Born approximation. The population factors take care that the initial states in
the scattering event are populated and that the final states are empty in accor-
dance with the Pauli principle. The scattering p+p1 → p′ +p′

1 is a loss term
which reduces f(p), while the inverse process p′ + p′

1 → p + p1 increases the
distribution function. For shortness of notation, the parametric dependencies
on the spatial coordinate r and time t are not shown in the collision integral.
The form of the collision integral leads to five conservation laws for: (a) the
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number of particles, (b) the vector of the total momentum, and (c) the to-
tal energy. In a dilute, nondegenerate gas the final state population can be
neglected, so that (1.2) can be simplified by the approximation 1− f(p) � 1.

A second important scattering rate for an electron gas in a perfect crystal
is the scattering by emission or absorption of a phonon. Its form is

∂f(p)
∂t

∣
∣
∣
coll

= −
∑

p′,q

w(p,p′;±q) ×
{

f(p)[1 − f(p′)]
[

1
2 + n(q) ± 1

2

]

−
[

1 − f(p)
]

f(p′)
[

1
2 + n(q) ∓ 1

2

]}

, (1.5)

where the intrinsic transition probabilty per unit time is given by

w(p,p′;±q) = |Mq|2δp,p′±q
2π
h̄
δ
(

εp′ ± h̄ωq − εp
)

. (1.6)

Here,Mq is the electron–phonon interaction matrix element, and n(q) and ωq
are the phonon distribution and frequency, respectively. Consider the upper
sign first, then the first term in (1.5) describes a scattering of an electron from
p into the state p′ accompanied with an emission of a phonon. The final state
boson population factor [1+n(q)] shows that the emission can be spontaneous
or stimulated. The energy conservation also shows that the energy εp of the
initially populated state is shared between the particle in the final state and
the phonon. The contribution of the lower sign in (1.5) describes a scattering
from p to p′ via absorption of a phonon with an occupation factor n(q).
The form of (1.5) shows that for the electron–phonon scattering rate only
the electron particle number is conserved, but no longer the total momentum
and the total energy of the electron gas which both can be transferred to the
phonon system. The phonon distribution in turn is also governed by a similar
Boltzmann equation which we will not give explicitly here.

Obviously the semiclassical Boltzmann equation cannot be used on very
short timescales because the assumption that the energy is conserved in an
isolated collision (1.2), (1.5) breaks down. In a short time interval δt the energy
remains undetermined due to the uncertainty relation δtδE ≥ h̄. Therefore
the strict energy conservation in an individual collision is not an inherent
property of the quantum kinetic description.

The mathematical properties of the Boltzmann kinetics contained in
(1.1), (1.2), and (1.5) have been thoroughly investigated. Its full theory is
a wide subject in its own; we will discuss only a few properties here. For a
much more complete treatment and for studies of its applications we have to
refer to such excellent books as Ziman [380], Cercignani [76], and Smith and
Jensen [327].

1.2 Approach to Equilibrium: H-Theorem

It is easy to convince oneself that the semiclassical Boltzmann equation (1.2)
describes indeed an evolution toward the thermal equilibrium in the absence
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of external fields. We introduce first an arbitrary function F (p, fp) which
depends on the momentum and the distribution f(r,p, t). Its local density is

〈F (r, t)〉 =
∑

p

F (p, fp)fp . (1.7)

The change of this function due to the collisions is [here we consider explicitly
the collision operator (1.2)]

∂〈F (r, t)〉
∂t

∣
∣
∣
coll

=
∑

p

[
∂F (p)
∂f(p)

+ F (p)
]
∂f(p)
∂t

∣
∣
∣
coll

= −
∑

pp′,p1,p′
1

w(p,p1; p′p′
1)
∂[F (p)f(p)]
∂f(p)

×
{

f(p)f(p1)[1 − f(p′)][1 − f(p′
1)]

− [1 − f(p)][1 − f(p′)]f(p1)f(p′
1)
}

. (1.8)

Exploiting the symmetry of the intrinsic transition probability w(p,p1; p′
1p

′)
with respect to the exchange of particle coordinates

w(p,p1; p′,p′
1) = w(p1,p; p′

1,p
′)

= w(p′,p′
1; p,p1) = w(p′

1,p
′; p1,p) , (1.9)

one finds that

∂〈F (r, t)〉
∂t

∣
∣
∣
coll

= −1
4

∑

pp′,p1,p′
1

w(p,p1; p′,p′
1)

×
[
∂(Ff)
∂f

+
∂(Ff)
∂f1

− ∂(Ff)
∂f ′

− ∂(Ff)
∂f ′1

]

×
[

ff1(1 − f ′)(1 − f ′1) − (1 − f)(1 − f1)f ′f ′1
]

. (1.10)

In (1.10) we have introduced a shorthand notation, for example in ∂(Ff)/∂f
all involved functions are evaluated at the argument p. Now consider the
following choice for F :

f(p)F (p, fp) = f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)] . (1.11)

The partial derivative with repect to f yields

∂(Ff)
∂f(p)

= ln
f(p)

1 − f(p)
. (1.12)
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Equation (1.10) becomes

∂

∂t

∣
∣
∣
coll

∑

p

f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)] =
∂

∂t
H(r, t)

∣
∣
∣
coll

= −1
4

∑

pp′,p1,p′
1

w(p,p1; p′,p′
1) ln

[
ff1(1 − f ′)(1 − f ′1)
(1 − f)(1 − f1)f ′f ′1

]

×
[

ff1(1 − f ′)(1 − f ′1) − (1 − f)(1 − f1)f ′f ′1
]

. (1.13)

The integrand is of the form (x− y) ln(x/y), and hence nonnegative, because
x − y and ln(x/y) have the same sign. Thus the H-function (called
“eta”-function, the capital greek eta looks like a latin H) always decreases
in the approach to equilibrium. This is the content of Boltzmann’s famous
eta-theorem, generalized to a Fermi gas.

The eta-theorem shows that the entropy density, which for a Fermi gas is
given by [226]

s(r, t) = −kBH(r, t)

= −kB
∑

p

{

f(p) ln f(p) + [1−f(p)] ln[1−f(p)]
}

, (1.14)

reaches a maximum in the equilibrium. Here, kB is Boltzmann’s constant.
Finally, we will show that the Boltzmann equation (1.2) describes indeed

an approach to the well-known Fermi equilibrium function. For this purpose
we formalize the already mentioned conservation laws. We define the functions
Fi(p) with i = 1, . . . , 5 as

F1 = 1, Fi = pi, i = 2, 3, 4, F5 = εp , (1.15)

we see immediately from (1.10) that the corresponding 〈Fi〉 are not changed
by the collisions. In equilibrium the term in curly brackets in (1.2) has to
vanish:

[

f0f0
1 (1 − f0′)(1 − f0

1
′
) − (1 − f0)(1 − f0

1 )f0′f0
1
′]

= 0 . (1.16)

From this relation one sees that

ln
f0

(1 − f0)
+ ln

f0
1

(1 − f0
1 )

= ln
f0′

(1 − f0′)
+ ln

f0
1
′

(1 − f0
1
′)
. (1.17)

In other words, ln[f0/(1 − f0)] is also a conserved quantity. Because we have
only five basic conservation laws, this quantity can be expressed as a linear
combination of 1,p, and εp:

ln
f0

(1 − f0)
= A+ B · p + Cεp (1.18)
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with
A = βµ, B = βu, C = −β , (1.19)

where β = 1/(kBT ), µ is the chemical potential and u is the drift velocity. All
the expressions in (1.19) can still be – slowly varying – functions of r and t.
Such a situation is called a local equilibrium. Equation (1.18) has the solution

f0(p) =
1

eβ(εp−p·u−µ) + 1
, (1.20)

which is the Fermi distribution function. A similar derivation for the
Boltzmann equation with electron–phonon scattering results in an equilib-
rium phonon distribution function of the form

n0(p) =
1

eβ(h̄ωp−p·u) − 1
, (1.21)

because the chemical potential of bosons, whose total number is not conserved,
is identical to zero.

1.3 Linearization: Eigenfunction Expansion

Close to thermal equilibrium the nonlinear Boltzmann equation, e.g., (1.2),
can be linearized with respect to the deviation δf ≡ f − f0 from the thermal
equilibrium solution (1.20). For simplicity we consider here a spatially homo-
geneous electron gas without drift. It turns out that it is advantageous to use
a normalized deviation φ(p, t) which is introduced by writing

f(p, t) =
1

eβ(εp−µ)−φ(p,t) + 1
. (1.22)

Expanding this function with respect to φ(p, t) yields

δf(p, t) = f0(p)[1 − f0(p)]φ(p, t) . (1.23)

The linearized Boltzmann equation yields the following net scattering rate for
the state p:

∂φ(p, t)
∂t

= − 2
f0(p)[1 − f0(p)]

∑

p1,p′,p′
1

w(p,p1; p′,p′
1)

×
{

φ(p, t)
[

f0(1 − f0)f0
1 (1 − f0′)(1 − f0

1
′
)

+ f0(1 − f0)(1 − f0
1 )f0′f0

1
′]

+ · · ·
}

. (1.24)

The dots indicate terms of similar structure proportional to φ(p1, t), φ(p′, t),
and φ(p′

1, t). In equilibrium
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f0f0
1 (1 − f0′)(1 − f0

1
′
) = (1 − f0)(1 − f0

1 )f0′f0
1
′
. (1.25)

Using relation (1.25), the linearized Boltzmann equation (1.24) reduces to

∂φ(p, t)
∂t

= − 2
f0(p)[1 − f0(p)]

∑

p1,p′,p′
1

W(p,p1; p′,p′
1) (1.26)

×
[

φ(p, t) + φ(p1, t) − φ(p′, t) − φ(p′
1, t)

]

= −L φ(p, t), (1.27)

with

W(p,p1; p′,p′
1) = w(p,p1; p′,p′

1)f
0f0

1 (1 − f0′)(1 − f0
1
′
) . (1.28)

The transition matrix W of the linearized Boltzmann equation has the
following symmetry properties:

W(p,p1; p′,p′
1) = W(p1,p; p′,p′

1)

= W(p′,p′
1; p,p1) = W(p,p1; p′

1,p
′) . (1.29)

The linearized Boltzmann equation also conserves the total particle number,
the total momentum, and the total energy. If one chooses a φ(p, t) which is
proportional to either 1,p, or εp, the r.h.s of the Boltzmann equation (1.26)
vanishes. Thus, these particular forms of φ(p) are eigenfunctions to the col-
lision operator L with a vanishing eigenvalue. The collision operator is an
integral operator

Lφ(p) =
∑

p′
L(p,p′)φ(p′) . (1.30)

In general the eigenfunctions φλ(p) are solutions of the stationary equation

Lφλ(p) = λφλ(p) . (1.31)

One can define a scalar product 〈σ|φ〉 and a norm |φ| by

〈σ|φ〉 =
∑

p

f0(p)[1 − f0(p)]σ∗(p)φ(p) , |φ|2 = 〈φ|φ〉 , (1.32)

and span a Hilbert space by the eigenfunctions of L. Using the symmetry
relations of W , one shows that L is a hermitian, real, and positive semidefinite
operator in this Hilbert space, i.e.,

〈σ|Lφ〉 = 〈Lσ|φ〉; 〈φ|Lφ〉 ≥ 0 . (1.33)

The equality sign holds, if φ is one of the five collision invariants. With these
definitions the solution of the time-dependent linearized Boltzmann equation
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with a given initial deviation φ(t = 0) = φ0 can be found by expanding φ0

in terms of the set of eigenfunctions φλ of L. The solution is then of the
form

φ(p, t) =
∑

λ

Aλe−λtφλ(p) . (1.34)

The eigenvalues λ are true relaxation frequencies for deviations φλ. However,
it is obvious from (1.34) that, in general, a description of the Boltzmann rel-
axation kinetics with only one relaxation time is not possible. Therefore the
most frequently used linear approximation to the collision rate, the so-called
relaxation-time approximation,

∂f(p)
∂t

∣
∣
∣
coll

� −δf(p)
τ

(1.35)

is only a very crude description of the relaxation kinetics toward equilibrium.
The effective relaxation time τ in the resulting exponential decay of a devia-
tion from the thermal equilibrium distribution has, in general, no well-defined
meaning, and is known not to describe adequately the experimentally observed
transport properties (e.g., viscosities and thermal conductivity of simple
mono- and diatomic gases) [327]. Since the linearized collision operator com-
mutes with the operator for the angular momentum in p-space, the normalized
deviation φ(p) can be factorized into a radial function and an angular part.
Unfortunately, the eigenfunctions have to be evaluated numerically. Only for
a nondegenerate system of Maxwell molecules with a repulsive interaction
potential ∝ r−4 analytical eigenfunctions have been found. In the case of deg-
enerate Fermi systems, where all momenta are confined to the neighborhood
of pF, the eigenfunction expansions have provided rapidly converging series
for various transport coefficients [60, 190].

We will illustrate in Chap. 2 the use of the eigenfunction expansion for
the numerical evaluation of the relaxation kinetics due to Coulomb scattering
in a quasi-two-dimensional (2D) electron gas. Such a 2D electron gas can be,
for example, realized in a semiconductor quantum well structure. This exam-
ple simultaneously addresses an important relaxation process of hot electrons
in semiconductors, because in a dense electron gas in semiconductors the
Coulomb scattering provides the fastest relaxation process.
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