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Multiscale Computational Materials Science

One might wonder why one does not derive all physical behavior of matter
from an as small as possible set of fundamental equations, e.g. the Dirac equa-
tion of relativistic quantum theory. However, the quest for the fundamental
principles of physics is not yet finished; thus, the appropriate starting point
for such a strategy still remains unclear. But even if we knew all fundamental
laws of nature, there is another reason, why this strategy does not work for
ultimately predicting the behavior of matter on any length scale, and this
reason is the growing complexity of fundamental theories — based on the dy-
namics of particles — when they are applied to systems of macroscopic (or
even microscopic) dimensions.

The idea that matter is made of small particles, called atoms', goes back
to the ideas of Leucippus and Democritus (460-370 B.C.) in classical Greek
philosophy of the fifth century B.C., see e.g. [68, 69], and has been very suc-
cessful in the development of modern concepts in physics. Introduced as a
working hypothesis in chemistry by John Dalton? (1766-1847) at the begin-
ning 19th century for explaining the stoichiometry in chemical reactions, the
reality of atoms was finally generally accepted among the scientific commu-
nity roughly 100 years later due to overwhelming experimental evidence and
theoretical achievements, e.g. Boltzmann’s kinetic gas theory which is based
on the pre-condition that atoms exist, or Einstein’s famous 1905 paper [72] in
which he developed a statistical theory of the Brownian motion which allowed
to calculate the size of molecules and atoms.

Despite these theoretical achievements, there were famous opponents such
as Ernst Mach (1838-1916) who was captured in his philosophy of positivism,
only accepting empirical data as basic elements of a physical theory. As atoms
at that time could not be directly observed, he attributed them to the realm

! From Greek “éropo” (indivisible).
2 The original publication is [70]. For a review, originally published in 1856 and
available today as unabridged facsimile, see [71].
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of metaphysical nonsense3. Albert Einstein (1879-1955) later wrote about his
1905 paper [74]:

“My principal aim was to find facts that would guarantee as much as
possible the existence of atoms of definite size. [...] The agreement of
these considerations with Planck’s determination of the true molecular
size from the laws of radiation (for high temperatures) convinced the
skeptics, who were quite numerous at that time (Ostwald, Mach), of
the reality of atoms.” (Albert Einstein, 1946, p. 45)

In fact, modern experiments with the largest microscopes available, that
is particle accelerators of high-energy physics, revealed that even the con-
stituents of atoms, neutrons and protons themselves show an inner structure
and are composed of yet even smaller particles, so-called quarks*. The idea of
the existence of ever smaller particles of matter seems to have come to an end
with quarks, due to quark confinement, a property of quarks which renders it
impossible to observe them as isolated particles®.

At the beginning 20th century it was realized that the classical (pre-
quantum) laws of physics could not be valid for the description of systems
at the atomic scale and below. Rutherford’s scattering experiments with Hs-
particles hitting a gold foil in 1911 [78] had shown that atoms could not
be elementary. The eventual development of the formulation of a quantum
theory during the years 1925-1927 also changed the “scientific paradigm” of
what is to be considered “understanding”, and also of what a physical the-
ory is expected to accomplish. In a passage of his book “Der Teil und das
Ganze” [79], Werner Heisenberg (1901-1976) writes in Chap. 5 of a discussion
with Albert Einstein in which Einstein claims that the idea to base a theory
only on observable elements, i.e. on elements or objects which are measurable
and perceptible in experiments, is nonsense. It is interesting to note that Ein-
stein used this “philosophy” himself as a heuristic concept for deriving the
special theory of relativity, eliminating such unobservable, metaphysical con-
cepts like “absolute space”, “absolute time”, and the idea of an “ether”, an
ominous substance which — in 19th century physics — was supposed to define

3 In contrast to Ernst Mach — roughly half a century later — Richard Feynman starts

the first chapter of his famous lecture series on physics [73] with the remark that
the atomic hypothesis, i.e. the idea that matter is made of single small particles,
contains the most information on the world with the least number of words.
This peculiar naming of the smallest known constituents of matter after the
sentence “Three quarks for Master Mark” that appears in James Joyce’s novel
“Finnegans Wake”, goes back to Murray Gell-Mann (Nobel price 1969).
This property of the strong interaction was discovered by D. Gross, D. Politzer,
and F. Wilczek (Nobel prize 2004) and is due to an increase of the strong coupling
constant (and along with it an increase of the strong force) with increasing dis-
tance of the quarks. That is, if one tries to separate quarks, energy is “pumped”
into the force field until — according to E = mc? — quark-antiquark systems come
into being. The original publications are [75, 76, 77].
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an inertial system (IS) and thus, an absolute frame of reference in space. Ac-
cording to Einstein — as Heisenberg writes — it is theory that determines what
is measurable in experiments and not vice versa.

In this context one may ask questions such as: “What actually is a “the-
ory” and what are the characteristics of a theory?” “What does “modeling”
actually mean?” “What is a model?” “Is a model “reality”?” “What is “re-
ality” in the natural sciences?” “What is the difference between a model and
a fundamental law of nature?” And dealing with computational physics one
could consequently ask the question as to what degree the result of a com-
puter program can be considered “reality”. Albert Einstein (1879-1954) writes
about the relevance of such epistemological questions in the natural sciences
in a 1916 memorial lecture for Ernst Mach [80]:

“How does it happen that a properly endowed natural scientist comes
to concern himself with epistemology? Is there no more valuable work
in his specialty? I hear many of my colleagues saying, and I sense it
from many more, that they feel this way. I cannot share this sentiment.
When I think about the ablest students whom I have encountered in
my teaching, that is, those who distinguish themselves by their inde-
pendence of judgment and not merely their quick-wittedness, I can
affirm that they had a vigorous interest in epistemology. [...] Concepts
that have proven useful in ordering things easily achieve such an au-
thority over us that we forget their earthly origins and accept them as
unalterable givens. Thus they come to be stamped as “necessities of
thought”, “a priori givens”, etc. The path of scientific advance is often
made impassable for a long time through such errors. For that reason,
it is by no means an idle game if we become practiced in analyzing
the long commonplace concepts and exhibiting those circumstances
upon which their justification and usefulness depend, how they have
grown up, individually, out of the givens of experience. By this means,
their all-too-great authority will be broken.” (Albert Einstein, 1916,
pp- 101-102)

Obviously, when applying or deriving physical theories and models of real-
ity, there are certain implicit and usually unspoken assumptions being made.
In the following sections it is tried to provide a few suggestions as answers
to the above questions and to discuss materials science within this context
of model building. Then, in Sect. 2.5, the degree to which physical laws have
been unified in modern physics is shortly discussed. Finally, in Sect. 2.6 some
fundamentals of computer science and the notions of “algorithm” and “com-
putability” and their eventual formalization in the concept of a wuniversal
Turing machine are discussed.
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2.1 Some Terminology

In science, one seeks after systems in which all different notions, concepts, and
theoretical constructs are combined into one consistent theory which explains
the diversity of physical phenomena with very few, general principles. Usu-
ally nothing can be changed in this system, or else it fails. This fact is the
hallmark of a physical theory. A prominent example is the (strong) principle
of equivalence, which states that the inertial mass m; (a measure of a body’s
resistance against acceleration), the passive gravitational mass mp (a measure
of the reaction of a body to a gravitational field) and the active gravitational
mass m4 (a measure of an object’s source strength for producing a gravita-
tional field) are the same. Thus, one can simply refer to the mass of a body,
where m = m; = mp = m4. If this principle was found to be wrong in any
experiment in the future, the whole theory of general relativity — which is a
field theory of gravity — would completely break down, because it is based
fundamentally on this principle. However, in Newton’s theory of gravitation,
this principle just appears as a theorem which states an empirical observation
— another coincidence. Nothing follows from it, and nothing would change in
Newton’s theory if it was not valid.

In mathematics, such principles, which form the theoretical basis of all
developments, are called azioms. Together with a set of rules of inference
and theorems, derived according to these rules, they build a theory. In fact,
the degree to which a theory or model has been “axiomatized” in the natu-
ral sciences can be used as a criterion, as to whether a theory is considered
to be as "closed”. Examples of closed theories, i.e. model systems in which
all hitherto known experimental facts can at least in principle be explained
and derived from a handful of axioms, are all classical theories in physics,
based on Newtonian mechanics, such as mechanics, thermodynamics, electro-
dynamics and also the special theory of relativity. These theories are thought
to be on excellent ground in both evidence and reasoning, but each of them
is still “just a theory”. Theories can never be proved and are subject to tests.
They can only be falsified. They are subject to change when new evidence
comes in.

In the previous considerations we have repeatedly used the words “sys-
tem”, “theory”, and “model”. These terms are generally more or less mixed
up and used interchangeably in the context of model building and there ex-
ists no strict, commonly accepted definition of these terms; however, “theory”
usually is used in science as a more general term than “model” in the sense
that a theory can combine different models (e.g. particles and waves) within
one theory (e.g. quantum field theory). Hence, the term “model” generally
refers to a lower level of abstraction, whereas a complete theory may combine
several models.

In this volume no particular distinction between “model” and “theory”
is made and the two terms are used interchangeably. Finally, a “system” is
a theoretical construct which includes all different hierarchical basic axioms,
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notions, models, and theories which pertain to some specific phenomenon in a
way, which renders it impossible to change anything within the system without
making it fail. If, despite numerous possibilities to be falsified, a certain system
or theory does not lead to any contradiction to known experimental facts, then
it is called a law of nature.

2.2 What is Computational Material Science
on Multiscales?

Strictly speaking, materials science of condensed matter today is focused
on the properties of condensed matter systems on a length scale compris-
ing roughly 10 to 12 orders of magnitude, ranging from roughly 10 A to a few
hundred meters for the largest buildings or constructions. The two extremes,
physics at the smallest scales below the atomic dimensions (<1A) or under
extreme conditions, e.g. Bose-Einstein condensates, or the properties of neu-
trons and protons, as well as large-scale structures such as stars or galaxies
and galaxy clusters, which are millions of light years in extend, are not an
object of study in materials science or engineering. Nevertheless, it is physics,
that provides the basic theories and modeling strategies for the description of
matter on all scales.

The reason why there is no single, perfect and all-comprising model for
calculating material properties on all scales relevant for materials science, is,
that nature exhibits complex structural hierarchies which occur in chemistry
and engineering devices as well as in biological systems (self-organization of
matter), investigated in the life sciences. Remarkably, on the Angstromscale
there are only atoms but then on larger length scales these basic constituents
build complex hierarchical structures in biology and chemistry [81], which are
treated with different theories that have a certain range of applicability, see
Fig. 2.1. These different theories have to prove successful in comparison with
experiments.

Materials of industrial importance such as glasses, ceramics, metals or
(bio)polymers, today are increasingly regarded as hierarchical systems, cf.
Fig. 2.2 and there has been a focus of research on the investigation of the
different structures of components, of classes of materials on various struc-
tural hierarchies, and their combination within “process chains”. Hence, the
typical structural or architectural features of materials on different scales have
to be taken into account. Usually one of two possible strategies is pursued.
In a bottom-up approach the many degrees of freedom on smaller scales are
averaged out to obtain input parameters relevant on larger scales. In contrast,
a top-down approach tries to establish the structure on smaller scales starting
from a coarse-grained level of resolution.
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Fig. 2.1. Scope of application of different fundamental physical theories in life
sciences (bottom) and in the areas of materials science and technology (top). For
subatomic particles, the standard model (cf. Sect. 2.5) is the accepted theory that
explains all hitherto observed elementary particles in accelerator experiments. To-
day, it is generally believed, that quantum theory is the most fundamental theory
which is in principal valid for the description of material behavior on all length
scales, cf. the discussion in the introduction of Chap. 5. However, due to the nu-
merical complexity of many particle systems treated on the basis of the Dirac or
Schrodinger equation, classical mechanics (instead of quantum mechanics) and clas-
sical electrodynamics (instead of quantum electrodynamics — the simplest prototype
of a quantum field theory — where the electromagnetic field is quantized itself) are
useful approximative theories on length scales larger than ~10 A. The classical the-
ories however are not valid for quantum systems of atomic or subatomic dimensions,
for phenomena occurring at speeds comparable to that of light (special relativistic
mechanics) and they also fail for the description of large scale structures in the uni-
verse in strong gravitational fields (here the general theory of relativity is needed).
The typical scopes of important experimental research methods using microscopes
are also displayed to scale

2.2.1 Experimental Investigations on Different Length Scales

For large scale structures in the universe, experimental data are collected
with telescopes, scanning a broad range of the electromagnetic spectrum. For
small structures of fluids and solids in materials science, scattering techniques,
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Fig. 2.2. Hierarchical view of structural properties of important classes of materials

such as Brillouin, neutron, Raman or electron scattering as well as different
microscopy techniques — as depicted in Fig. 2.1 — are used on different length
scales®. The minimum separation d that can be resolved by any kind of a
microscope is given by the following formula:

d=M\/(2nsinX) , (2.1)

where n is the refractive index” and X is the wavelength. The resolution of a
microscope is the finest detail that can be distinguished in an image and is
quite different from its magnification. For example, a photograph can be en-
larged indefinitely using more powerful lenses, but the image will blur together
and be unreadable. Therefore, increasing the magnification will not improve
resolution. Since resolution and d are inversely proportional, and (2.1) sug-
gests that the way to improve the resolution of a microscope is to use shorter
wavelengths and media with larger indices of refraction.

The electron microscope exploits these principles by using the short de
Broglie wavelength of accelerated electrons to form high-resolution images.
The de Broglie wavelength of electrons (e™) is given by

2w 2mh h 150 .
)\ = — = — = — P ———— A = 10_10 2.2
k P V2me-FE V[Volt] [ ml (22)

6 Also compare Fig. 7.23 on p. 366.
7 The refractive index n = 1 in the vacuum of an electron microscope.
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where k is the wave vector, p is the momentum and energy FE is given in
electronvolts, that is the acceleration voltage of the electrons.

An electron microscope is an instrument that uses electrons instead of light
for the imaging of objects. In 1926, Hans Busch in Germany discovered that
magnetic fields could act as lenses by causing electron beams to converge to a
focus. A few years later, Max Knoll and Ernst Ruska made the first modern
prototype of an electron microscope [82].

There are two types of electron microscopes: the Transmission (TEM) and
the Scanning (SEM) (or Scanning Tunneling (STM)) Electron Microscope. In
a TEM, a monochromatic beam of electrons is accelerated through a potential
of 40 to 100 kilovolts (kV) and passed through a strong magnetic field that
acts as a lens. With a TEM one can look at structures in solids and replicas
of dead cells after fixation and sputtering with heavy metal, e.g. gold atoms.
With this technique, electrons are reflected off the surface of the specimen. The
resolution of a modern TEM is about 0.2 nm. This is the typical separation
between two atoms in a solid. This resolution is 1,000 times greater than a
light microscope and about 500,000 times greater than that of a human eye.
The SEM is similar to the TEM except for the fact that it causes an electron
beam to scan rapidly over the surface of the sample and yields an image of
the topography of the surface. The resolution of a SEM is about 10 nm. The
resolution is limited by the width of the exciting electron beam and by the
interaction volume of electrons in a solid. As an example, in Fig. 2.3 an SEM
picture of the granular surface structure and the fracture surface of AloOg3 are
shown in different resolutions as displayed in the figure.

Atomic Force Microscopy (AFM) is a form of scanning probe microscopy
where a small probe is scanned across the sample to obtain information about

(a) (b)

Fig. 2.3. (a) SEM micrograph section of an etched AlyO3 ceramic surface exhibiting
the granular structure on the microscale. (b) Fracture surface of AloO3 after an
edge-on impact experiment (discussed in Chap. 7) at a speed of ~ 400m/s. Photos
courtesy Fraunhofer EMI
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the sample’s surface. The information gathered from the probe’s interaction
with the surface can be as simple as physical topography or as diverse as the
material’s physical, magnetic, or chemical properties. These data are collected
as the probe is raster-scanned across the sample to form a map of the measured
property relative to the X-Y position. Thus, a microscopic image showing
the variation in the measured property, e.g. height or magnetic domains, is
obtained for the area imaged.

Today, electron microscopy is widely used in physics, chemistry, biology,
material science, metallurgy and many other technological fields. It has been
an integral part in the understanding of the complexities of cellular structure,
the fine structure of metals and crystalline materials as well as numerous other
areas of the “microscopic world”.

2.3 What is a Model?

The complexity of the world is obviously too large in order to be compre-
hended as a whole by limited human intellect. Thus, in science, a “trick” is
used in order to still be able to derive some simple and basic laws and to
develop a mental “picture” of the world. This trick consists in the isolation of
a system from its surroundings in the first place, i.e. one restricts the investi-
gated system to well-defined, controllable and reproducible conditions. These
conditions are called initial conditions. After this preparation of a system, one
performs experiments and investigates which states the system is able to at-
tain in the course of time. The underlying assumption in this procedure is, that
there are certain laws which determine in principle the temporal development
of a system, once it has been prepared in an initial state and left to itself.

Usually, model building is lead by the conviction that there exists an “ob-
jective reality” around us, i.e. a reality which is independent of the individual
observer who performs experiments and makes observations®.

The idea that there are fundamental laws of nature goes back to Greek
philosophy, but until Galileo Galilei (1564-1642), there were only very few
experimentally verifiable consequences of this idea. To identify fundamental
laws, the considered system has to be isolated from its particular surrounding.
Take as an example the ballistic, parabolic curve of a kicked football on Earth.
The fact that an object which is thrown away on Earth follows a parabolic
path is a law of nature; however, it is not a fundamental law. One realizes the
fundamental law when abstracting from the Earth’s atmosphere and then, in a
next step, completely abstracting from the special viewpoint on Earth. When
throwing away a ball in empty space, far enough away from any gravitating
sources, there is no gravity which will force it on a ballistic curve®, that is,

8 Solipsism in this context is not a scientific category, as it renders all rational
discussions useless and impossible.

9 Of course, this is only true, if the object has a velocity component parallel to the
surface of Earth.
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it will simple follow a straight line (a geodesic, to be exact). This finding is
due to Galilei and is consequently called Galilei’s law of inertia. Hence, the
fact, that objects thrown on Earth describe ballistic curves (i.e. not straight
lines) is only due to the particular circumstances, the special point of view of
the observer on Earth, or physically spoken, his frame of reference, which is
not the simplest possible one. In the simplest possible frame of reference — a
freely falling reference frame — which is “isolated” from both, air resistance
and gravity, the ball will follow a simpler path, that is a straight line. Systems
in which moving objects that are not subject of any external forces — e.g. due
to gravity or electromagnetic fields — follow a straight line, are called inertial
systems. Mathematically spoken, the inertial systems build an equivalence
class of an infinite number of systems. The inertial systems are also those
frames of reference in which Newton’s mechanics and the special theory of
relativity are valid.

One remarkable thing about fundamental laws of physics is, that they are
deterministic and time-reversible!®, or time-symmetric (symplectic), i.e. in
the example of the flying ball above, each point on the ballistic curve together
with its velocity can be viewed as initial state of the system which then —
due to the laws of nature — completely determines the future behavior in a
classical sense. From a fundamental point of view, it is thus amazing that
processes in nature seem to occur only in a certain direction such that they
can be distinguished in “past” and “future” events'!. One could say, because
the fundamental laws of nature do not distinguish any direction of time, in
closed systems, eventually all processes die out which are not time reversible,
i.e. the system approaches its thermal equilibrium state. In equilibrium, no
process occurs any more, except remaining time-reversible fluctuations about
the equilibrium state which have equal probability. This tendency of the laws
of nature are being exploited for example in the computational methods of
Molecular Dynamics and Monte Carlo simulations, discussed in Chap. 6.

2.3.1 The Scientific Method

The roots of the scientific method as an interplay between theory (models or
systems) and experiment, practiced in the natural sciences today, lie in the
philosophy of Plato (427-347) and Aristotle (384-322). An important funda-
mental idea of Plato is to consider all observable things only as incomplete
pictures or reflections of an ideal mathematical world of ideal forms or ideas
which he illustrated in his famous Allegory of the Cave at the beginning of
book 7 of Republic, see e.g. [83]. Aristotle however radically discarded Plato’s

10 Time-reversibility (or time-symmetry) is actually broken in certain rare elemen-
tary particle physics processes which was shown in 1964 by J.L. Cronin and
V.L. Fitch (Nobel Prize 1980) at CERN.

11 For example, it has never been observed, that the pieces of a broken cup cool off
and repair themselves, although this process is not forbidden by any fundamental
law of nature.
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Explanations (Principles)

Generalization Specialization
by Induction by Deduction

Observation of Phenomena by Experiments

Fig. 2.4. Aristotle’s inductive-deductive principle

dual concept of on the one hand, ideal forms, and on the other hand, perceiv-
able phenomena. According to him only the phenomena themselves could be
considered as true sources of knowledge about nature. In a process of general-
izing induction, see Fig. 2.4, explanatory principles are attained. Using general
propositions which include those principles, statements on the phenomena are
formulated by pure reasoning (deduction). An important point in the Aris-
totelian method is the fact that his way of modeling does not try to explain
things by reduction to higher-ranking mathematical structures (as Plato did).
From a modern point of view however, it is astonishing, that Aristotle did
not systematically introduce or “invent” the experiment as a way to decide
about the usefulness and applicability of the explanations of phenomena. This
crucial step of artificially isolating and idealizing a system from its complex
environment was achieved by Galilei [84], which he describes in his Dialogue
of 1638, cf. Fig. 2.5(a).

He realized the epistemological importance of the experiment which con-
fronts the assumed explanatory principles with the phenomena and thus pro-
vides a means of testing and falsifying mathematically formulated hypotheses
about nature, cf. Fig. 2.6.

Isaac Newton finally introduced in his Principia, cf. Fig 2.5(b), the az-
iomatic method into the natural sciences, where the formulation of mathe-
matical principles in the form of axioms is achieved in a process of intuitive
generalization. He was the first one who had the idea that the mechanical be-
havior of the world might work like a clock that is set; with this idea Newton
introduced the crucial partition of the world into initial conditions on the one
hand, and laws of nature on the other hand. In this context Einstein writes
in a letter to Maurice Solovine [85]:

“I see the matter schematically in this way:

(1) The E’s (immediate experiences) are our data.

(2) The axioms from which we draw our conclusions are indicated by
A. Psychologically the A’s depend on the E’s. But there is no logical
route leading from the E’s to the A’s, but only an intuitive connection
(psychological), which is always “re-turning”.
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(3) Logically, specific statements S, S’, S” are deduced from Aj; these
statements can lay claim to exactness.

(4) The A’s are connected to the E’s (verification through experience).
[...] But the relation between S’s and E’s is (pragmatically) much
less certain than the relation between the A’s and the E’s. If such
a relationship could not be set up with a high degree of certainty
(though it may be beyond the reach of logic), logical machinery would
have no value in the “comprehension of reality”.” [accentuations by
Einstein] (Albert Einstein, 1952, p. 137)

Thus, according to Einstein, it is impossible to find a strict logical connec-
tion between the observed phenomena and the system of axioms by pure in-
duction. Rather, one has to find general principles by intuition, using heuristic
principles, e.g. symmetry, logical and mathematical simplicity, or keeping the
number of independent logical assumptions in a theory as small as possible,
cf. [86, 87].

With the axiomatic method one tries to formulate theories on two levels.
The first level is the one that states fundamental theorems, principles and the
axioms themselves, which summarize experimental facts, e.g Newton’s axioms
or Maxwell’s equations which are “true” or “real” in the sense that they are
statements on the behavior of nature. The second level is the level of the the-
ory itself and its interpretation. On this level one may introduce objects and
terms such as “potential”, “point particle”, “wave function”, “atom”, “quark”,
“field”, etc. which are used to derive and predict properties and states of sys-
tems based on the axioms. One might wonder why it is necessary to interpret
a physical theory when it already has been formulated in axiomatic form. The
reason for this need is, that a theory, in order to explain phenomena, needs to
contain abstract concepts as elements which go beyond a mere phenomenolog-
ical description. However, it is not a priori clear to what extend these concepts
represent anything in “reality” and can thus be given an explicit meaning. For
example, Newton was able to add the notions of an absolute space and time
to his theory, which are not defined within his system and which are not used
in the formulation of Newton’s axioms, i.e. the basic theorems on the first
level. Thus, such terms do not really change any consequences or predictions
of the theory which could be tested in experiments. Ernst Mach was one of
the most prominent critics of such redundancies in Newton’s theory which he
expresses in the book “Die Mechanik in ihrer Entwicklung — Historisch kri-
tisch dargestellt” [88]. The idea to remove and to avoid redundant elements in
theories (sometimes called Occam’s razor'?) can sometimes be a very useful
heuristic method in the attempts to falsify or improve a theory.

A naive and primitive notion of “existence” and “reality” is connected
with something that can be seen and “perceived” with one’s own senses or
at least “detected” with some instruments. In modern science however, every

12 After the 14th century monk William of Occam who often used the principle of
unnecessary plurality of medeval philosophy in his writings, such that his name
eventually became connected to it.
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element of a theory which leads to consequences that can be tested and falsified
is considered to be “as real as a chair”'®. In this sense, it is theory that
determines what “reality” is. An example is the assumption (or hypothesis)
of the existence of quarks, the constituents of neutrons and protons in the
atomic nuclei. Teller writes about this “philosopher problem” [90]:

“I take it that the “philosopher problem” refers to the attitude crudely
summarized by saying that “if we can’t see it, can’t see it under any
circumstances, then it isn’t real”. [...] When we see chairs, tables, and
any sort of middle-sized macroscopic objects, we do so only via the
good offices of a flood of photons, massaged by a lot of optics, inter-
action with the neurons in the retina, data manipulation in the optic
nerve and further cortical processing, until whatever neural processes
that ensue count as perception. Now, given that our perception of or-
dinary chairs and tables is this indirect, what grounds could we have
for denying reality (in whatever sense chairs and tables are real) to
something we see only slightly more indirectly? [...] In whatever sense
you think chairs and tables are real, and once you appreciate the in-
directness of our perception of these things, the greater indirectness
of seeing smaller things is not going to be an in-principle reason for
thinking the smaller things are not real in the same sense. Of course,
as the chain involved in indirect perception gets longer, the chance
of error may increase; the chances that we have been fooled about
quarks may well be larger than the [...] chances that we have been
fooled about chairs and tables. But the kind of reason we have for
thinking that quarks are real differs in degree, not in kind, from the
kind of reason we have for thinking that chairs and tables are real,
always with the same sense of the word “real”.” [accentuations by
Teller] (Edward Teller, 1997, p. 635)

Despite the fact that it is impossible to detect and virtually “see” quarks sepa-
rately as individual particles, due to the properties of the interactions between
them, these particles are considered to be “real”, because their existence helps
to establish a consistent theory — the standard model (cf. Sect. 2.5) — which
explains all hitherto observed interactions, gravitation excepted.

Pais writes in “FEinstein lived here” [91] in Chap. 10 that Einstein often
distinguished between two kinds of theories in physics: theories based on prin-
ciples and constructive theories. This idea was first formulated in a brief article
by Einstein in the Times of London in 1919 [87]. With a constructive theory,
one tries to describe complex observations in relatively simple formalisms, usu-
ally based on hypothetical axioms; an example would be kinetic gas theory.
With a principle theory, the starting point is not hypothetical axioms, but a set
of well-confirmed, empirically found generalized properties — so-called princi-
ples — of nature; examples include the first and second law of thermodynamics.

3 See e.g. the comments on p. 54 of Steven Weinberg’s book “Dreams of a final
theory” [89].
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Ultimate understanding requires a constructive theory, but often, according
to Einstein, progress in theory is impeded by premature attempts at develop-
ing constructive theories in the absence of sufficient constraints by means of
which to narrow the range of possibilities. It is the function of principle theo-
ries to provide such constraint, and progress is often best achieved by focusing
first on the establishment of such principles. In the following, some important
general principles are listed that can be found in textbooks on theoretical
physics, and which are often used as heuristic guidelines in the development
of models in materials science, and for their numerical counterparts.

Hamilton’s principle (Principle of minimization of the integral of action).
Principle of minimal potential energy (Dirichlet’s variational principle).
Fermat’s Principle (Principle of the shortest path of light).

Principle of virtual work by d’Alembert.

Ritz’ variational principle.

Galilei’s principle of relativity.

Principle of special relativity.

Principle of general relativity.

Principle of general covariance.

Symmetries of groups and group operations.

Energy-momentum conservation.

Angular-momentum conservation.

In this list we haven’t mentioned some principles which are applied only on
the level of elementary particle physics, such as the principle of charge and
parity (CP)-invariance (which is only violated in the decay of the neutral K-
meson) or the principle of charge, parity, and time (CPT)-invariance which is
assumed to be valid for all known fundamental interactions.

As discussed above, there is no general learnable way of guessing or finding
physical laws; rather, for want of a logical path often intuition and (sometimes
even unconscious) ad-hoc hypotheses finally lead to success*. A law of nature
that has been found or a theory that has been formulated is just a guess which
is then put to the (experimental) test. Some common key features with the
development of any model are:

Simplifying assumptions must be made.

The number of logically independent elements and heuristic theorems
which are not derived from basic notions (axioms) should be as small
as possible.

Boundary conditions or initial conditions must be identified.

The range of applicability of the model should be understood.

14 Albert Einstein’s quest for a formulation of general relativity during the years
1907—-1915 is the classic example, cf. Chap. 3 on p. 171.



42 2 Multiscale Computational Materials Science

It is important to realize, that a theory or a model can only explain phe-
nomena, if it contains abstract concepts as elements which go beyond mere
observation. An example for this is Maxwell’s displacement current OE /9t (in
appropriate units), which he added to Ampere’s original law based purely on
theoretical considerations, which cannot be obtained from observation.

Ezample 1 (Mazwell’s and Finstein’s Field Fquations). There is an interesting
analogy between Maxwell’s development of the field equations of electromag-
netism in 1865 [92] and Einstein’s development of the field equations of general
relativity half a century later. Beginning in the 1850’s, Maxwell elaborated
ideas of Faraday to give a complete account of electrodynamics based on the
concept of continuous fields of force (in contrast to forces acting at a distance).
In modern terminology he arrived at the first gauge theory of physics, using
the following four partial differential equations which encode observational
facts for the electric and magnetic fields E(Z,t), B(Z,t) and their correspond-
ing sources, charge density and current density p(Z, t), ]ﬂ(;z'c'7 t), directly derived
from experiment:

VE = 47p , (2.3a)
L 4Am-. 10E
B=2j4+-2 2.3b
V x - i+ sl (2.3b)
. 1B
F=——— 2.
V X el (2.3¢)
VB=0. (2.3d)

Maxwell added the extra term %%—?,

to Ampere’s law in (2.3b), such that the continuity equation Vj = —9dp/ ot
is also fulfilled in the case of time dependent fields. The continuity equation
then follows from (2.3a) and (2.3b). Additionally, the inclusion of the dis-
placement current leads to transverse electromagnetic waves propagating in a
vacuum at the speed of light. Thus, the combination of charge conservation
and Coulomb’s law implies that the divergence of equation (2.3b) vanishes
and renders the set of equations mathematically consistent.

With a similar consideration Einstein arrived at the final field equations
of general relativity; the simplest hypothesis involving only the metric coef-
ficients g, and their first derivatives, is that the Ricci tensor R,,, equals
the stress energy tensor Tp,,, (see Chap. 3 for a proper introduction to ten-
sors). It turns out however, that the divergence of R, does not vanish as
it should in order to satisfy local conservation of mass-energy. However, the
tensor Rppn — 1/2¢mnR does have vanishing convergence due to Bianchi’s
identity'®. Thus, when including the additional trace term —1/2g,,,R one
yields the complete and mathematically consistent field equations of general
relativity:

which was not obtained from experiment,

15 Rijt |, + Rijim s, + Rijme ), = 0, see e.g. [93].



2.3 What is a Model? 43

Rmn - %gmnR = _87;#
Einstein commented on this in a letter to Michele Besso in 1918 in which he
was chiding Besso for having suggested (in a previous letter) that, in view
of Einstein’s theory of relativity, “speculation has proved itself superior to
empiricism”. Einstein disavowed this suggestion, pointing out the empirical
base for all the important developments in theoretical physics, including the
special and general theory of relativity. He concludes [94]:

Ty - (2.4)

“No genuinely useful and profound theory has ever really been found
purely speculatively. The closest case would be Maxwell’s hypothesis
for displacement current. But there it involved accounting for the fact
of the propagation of light (& open circuits).” (Albert Einstein, 1918,
p. 524)

The question to what extend a physical theory maps a small part of reality
has been answered differently at different times, but one can distinguish at
least three different convictions or “paradigms”:

1. Phenomenological: one seeks an economic description of sensory percep-
tions and defines them as “reality”.

2. Operational: one seeks instructions, according to which the descriptive
elements of the theory can be measured, and defines them as “reality”.

3. Realistic: one seeks abstract principles and theorems that go beyond a mere
description of observations and defines “reality” by all those elements of
the theory the consequences of which can be falsified by experimental tests.

The phenomenological point of view interprets theories as an instrument of
describing observations in an economic way; this attitude could be described
as positivism of Machian character. The Copenhagen interpretation of quan-
tum theory, cf. Chap. 5, is based on an operational interpretation of a physical
theory. Here, everything that can be measured is considered to be “real”. A
realistic interpretation of theories assumes that the used notions in a theory go
beyond a mere description of observations and all elements or objects that are
introduced in the theory are considered to be “real” if they lead to any conse-
quences that can be tested in experiment. For example, in the current theory
of elementary particles — the standard model — symmetry principles play a
fundamental role; they build the basic mathematical ontology of physics. In
this context Weinberg writes in “The rise of the standard model” [95]:

“The history of science is usually told in terms of experiments and the-
ories and their interaction. But there is a deeper level to the story — a
slow change in the attitudes that define what we take as plausible and
implausible in scientific theories. Just as our theories are the product
of experience with many experiments, our attitudes are the product of
experience with many theories.[...] The rise of the standard model was
accompanied by profound changes in our attitudes toward symmetries
and field theory.” (Steven Weinberg, 1997, p. 36)
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2.4 Hierarchical Modeling Concepts above
the Atomic Scale

The equations of fundamental theories such as quantum theory become too
complex when being applied to macroscopic systems, which involve an astro-
nomical number of constituents. Thus, various approximative theories have
been devised, which lead to equations that can be solved at least numerically.
Each theory has its range of applicability and this is the main reason why there
are so many different computational methods that are used in engineering and
materials science, cf. Fig. 2.7.

Classical Newtonian mechanics is a scientific system which is only approx-
imatively valid for the description of the dynamics of condensed matter at
small velocities and for lengths larger than ~1071%n. For smaller distances,
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Fig. 2.7. The structural hierarchy of length scales in nature is also reflected in fun-
damental physical theories based on fields and particles, which have different scopes
of validity. Depicted are some typical physical phenomena on different length scales
and some basic equations of physical theories used on the respective scale, e.g. the
Schrodinger equation at the atomic scale, classical Newtonian particles dynamics,
the diffusion equation based on the concept of fields, or the constitutive equation
for large scale elasticity and plasticity, connecting stress (force per unit area) and
strain in a body, modeled as a continuum with an infinite number of degrees of
freedom
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classical mechanics has to be replaced by a different system — quantum theory,
or sometimes called quantum mechanics, when referring specifically to the
description of the motion of particles with mass. For large velocities, special-
relativistic mechanics, where space and time are united in spacetime, has to
be used, see Sect. 3.6.1 in Chap. 3 on p. 166.

2.4.1 Example: Principle Model Hierarchies in Classical Mechanics

Classical theoretical mechanics is an appropriate theory for the description of
phenomena occurring between objects above the spacial dimensions of atoms
(~1A= 101 m) and for small velocities. For the description of the dynamics
of objects of atomic dimensions, classical physics breaks down and instead
quantum theory is a more appropriate model. Today, it is believed that quan-
tum theory is the fundamental theory, underlying all subatomic, atomic, mi-
croscopic, mesoscopic and macroscopic objects and natural phenomena. For
a discussion and references, see Chap. 5.

There are different layers or hierarchies of models in theoretical physics.
These could be grouped according to the number of general natural phe-
nomena which can be explained by the respective model system. In classical
mechanics for example there are different abstraction layers, or hierarchies of
the mechanical systems, which we shortly discuss in the following.

Mechanics of Mass Points

The possibly simplest of all model systems is the model of a mass point which
is based on the notion of a dimensionless object, i.e. an imaginary object
which has no extension in space but contains all mass m of the considered
system. This is equivalent with the notion of a “point” in mathematics which
can be identified by being assigned some numbers in an appropriately chosen
coordinate system. The motion of mass points is then described within the
classical Newtonian system. Whether this approximation is useful depends on
the considered system (e.g. the motion of earth around the sun).

Mechanics of Point Systems

If there are many mass points one speaks of a point system, or a many
N —particle system. By deriving equations of motion for point systems, some
general principles, so called integral principles such as d’Alembert’s or Hamil-
ton’s principle can be derived. The advantage of general principles in the
derivation of equations of motion (EOM) is that there is no preferred coordi-
nate system. Thus, using variational calculus one can obtain EOM in general
coordinates. Due to the large number of mass points in a macroscopic body of
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order O(102%), and the just as many ordinary differential equations, a general
solution is only possible when symmetries are present'S.

Mechanics of Rigid Bodies

A rigid body is a special system of mass points in which one can neglect the
relative motion of the points with respect to each other. Real systems fulfill
this condition only approximately. However, many bodies — under normal
conditions — change their shape and volume only marginally. A rigid body has
6 degrees of freedom (3 translations and 3 rotations); thus, for such systems
one obtains 6 differential equations of 2nd order.

Mechanics of Continua

In continuum mechanics one only considers motions of bodies, in which neigh-
boring mass points (e.g. atoms) approximately move into the same direction.
In this case one can approximate the whole body as a continuum with an
infinite number of degrees of freedom, cf. the discussion in Sect. 7.7. One
advantage of this approximation is that the number of equations is reduced
drastically; instead of having to solve many ordinary differential equations,
one has to solve only a few but partial differential equations. Usually one dis-
tinguishes elastomechanics which treats deformable solid media (solid states),
where the constituents are still bound strongly together such that small de-
viations lead to strong forces (inner tensions), and hydrodynamics which is
applicable to gases and fluids where the constituents are bound only weakly
together (see Chap. 7).

It can be useful to employ different models for the same system. For ex-
ample, when considering the revolution of earth around the sun, it is useful
to model the Earth (and the Sun) as a mass point which contains all mass.
However, when considering its rotary motion it is useful to use the model of
an extended stiff body. However, both of these models will fail when trying
to describe tidal effects due to movements of matter within the earth’s crust.
Here one has to use continuum theoretical concepts. Which model is the best
in which situation is not an easy task to decide and no algorithm can help a
scientist here in making a useful decision. Sometimes there are some empirical
rules (so called heuristics, i.e. concepts which have proved successful in the
past even if these concepts are rather empirical) which can be used as a guide.
In the end, it is the experience and intuition of the scientist which lead to the
use of a certain model in some situation.

16 In fact, the N-body problem is analytically unsolvable for N > 3, cf. Example 37
on p. 270.
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2.4.2 Structure-Property Paradigm

In experimental materials science today one usually breaks a system (e.g. a
material such as a metal specimen or a ceramic plate) into smaller pieces and
investigates the properties of the obtained smaller structures with the aid of
microscopes. The idea, or conviction behind this procedure is based on our
hierarchical view of the structure of matter and the believe that if one can
understand the mechanics of a small subsystem, one can also understand the
whole system. One assumes as a working hypothesis that the observed macro-
scopic phenomenological properties of a material (e.g. its plastic or elastic
reaction to an external load) are determined in principle by the properties of
its meso-, micro-, and nanostructure. This assumption is called the structure-
property paradigm of materials science, cf. Table 2.1.

2.4.3 Physical and Mathematical Modeling

As presented in Fig. 2.1 on p. 32, materials science covers roughly 12 orders of
magnitude in size, along with the associated time scales of physical processes.
While atomistic methods based on quantum mechanics prevail in detailed mi-
crostructure simulations at the nanoscale as well as coarse-grained atomistic
simulations neglecting the electrons at the microscale, such a detailed numer-
ical treatment of systems cannot be done at the meso- and macroscale. Here,
one has to average out the many atomic degrees of freedom and use “super-
atoms” which represent large clusters of atoms. With this approach, systems
on the meso- and macroscale can still be treated with a classical particle ap-
proach solving Newton’s equations of motion, see e.g. [7, 96]. The physical
and mathematical part of model building often go hand in hand, as physical
ideas on the materials behavior are usually formulated using mathematical
concepts and (differential) equations.

Table 2.1. Illustration of the structure-property paradigm of materials science.
Molecular structural properties of systems determine their mesoscopic structures
and ultimately the observed macrospcopic properties of solids and fluids

Structure Property
Molecular Macroscopic
Nano Micro Meso Macro
Electronic structure Molecule size Volume ratio Viscosity
Inter-atomic interaction Molecular weight Packing density  Strength
Bond angles Fiber/matrix interaction Fiber orientation Toughness
Bond strength Grain size distribution  Flexibility Modulus
Bond failure Cross-link density Dispersion Stress/strain
Chemical sequence Defects Heat transport Plasticity

Unit cell Crystallinity Grain orientation Durability
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State Variables and Equations of State for Micro-
and Mesostructural Evolution

When investigating fluids or solids using continuum based microstructural
simulations, one is usually not interested in the dynamics, i.e. positions and
momenta of single fluid particles or superatoms in the solid; rather, one is
interested in the average behavior of the system’s macroscopic state variables
such as temperature T, pressure p, density p, displacement u’, stress ¢* and
strain €, or free energy F in Ginzburg-Landau type models, etc., which are
described as continuum variables. In thermodynamics, ertensive state vari-
ables such as entropy S, volume V, or energy F of a heterogeneous system
are additive with respect to the different phases of a system, i.e. they are pro-
portional to the amount of substance, e.g. mass m or number of particles N. In
contrast, intensive state variables are independent of the amount of substance
and may assume different values in different phases of a system. Examples are
refraction index, p, p, or T, which may be defined locally, that is they are
parameterized fields with an infinite number of degrees of freedom within the
framework of classical field theories. Usually time and position are used for
parameterizing field properties, i.e. the state variables are functions of posi-
tion and time. To determine the spacial dependency of intensive variables, one
needs additional conditional equations, for example from hydrodynamics or
in the form of other phenomenological equations of state. Examples for equa-
tions of state are Hooke’s law in dislocation dynamics, nonlinear elasticity
laws in polymer dynamics, or the free energy functional in Ginzburg-Landau
type microstructural phase field models. The question as to how many state
variables are needed to completely characterize a closed system at equilibrium
is answered by Gibb’s phase rule (see Problem 6.2 on p. 327):

f=C+2-P, (2.5)

where C' is the number of chemical components, P is the number of phases
and f labels the degrees of freedom.

Phenomenological descriptions based on thermodynamic equations of state
and continuum mechanics are prevailing in typical engineering applications on
the meso- and macroscale, for example in the prediction of material behav-
ior of composite materials such as concrete, metal-matrix composites, poly-
mer fiber-reinforced composites or multi-phase ceramics under various load
or processing conditions. A great disadvantage of detailed phenomenological
descriptions taking into account structural features observed on the meso- and
microscale, is the often large number of state variables that is required. Such
an approach, involving many variables, may quickly degrade a transparent
physical model based on few assumptions to a mere empirical polynomial fit
model, where the state variables just serve as fitting parameters. Too great a
number of parameters often reduces the value and the physical significance of
a model considerably. In many practical engineering approaches in industry, a
many-variable fitting approach may be helpful to gradually optimize materials
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in certain manufacturing processes, too complicated for an explicit descrip-
tion, however, it is less desirable in physically oriented simulations taking into
account micro- and mesostructures.

State variables in mesoscale simulations are usually weighted with cer-
tain additional, empirical parameters. Often, these mesoscopic parameters are
nonlinearly coupled with other equations of state which renders such models
numerically rather complex. By definition, state variables are defined for sys-
tems at thermal equilibrium. A system like a polycrystalline microstructure
however, is generally not at equilibrium and the systems evolution may occur
irreversible; hence, the system’s evolution equations are generally path depen-
dent, i.e. they are no total differentials which can be readily integrated. This
difficulty gave rise to the increased application of statistical models in recent
years, often based on the Monte Carlo Method [97] (cf. Chap. 6.6). MC meth-
ods have been used e.g. for the simulation of diffusion behavior or short range
ordering [98, 99], recrystallization [100], grain growth [101, 102], or bound-
ary misorientations [103, 104]. Among the most successful mesoscale models
for microstructural evolution simulations are vertex models [105], phase field
models [106], cellular automata [107, 108] and Potts models [109]. In the
beginning 1980s it was realized that Potts domain structures are similar to
granular microstructures. As both systems are characterized by a space-filling
array of domains which evolve to minimize the boundary area, the Potts
model was used for a variety of simulations such as late-stage sintering [110],
or grain growth in polycrystals in 2 dimensions (2D) [111, 112, 113, 114], and
in 3D [115]. As a result of the above-mentioned modeling approaches for mi-
crostructure dynamics, one obtains a set of governing equations, which model
the microstructural elements of the considered solid by means of state vari-
ables, that are functions of position, time or other parameters, such as the
dislocation density or grain curvature.

Kinematic Equations

The mere description of the motion (changes of position) of objects in classical
mechanics without reference to their origin, that is forces, is called kinematics.
Kinematic equations allow for the calculation of certain mechanical properties
which are based on coordinates and its derivatives with respect to time, ve-
locity and acceleration, e.g. strains, strain rates, crystal orientations, or rigid
body spin'” to name but a few. It is very important to understand that po-
sitions are assigned with reference to arbitrarily chosen coordinate systems.
Therefore, positions, that is, coordinates have no intrinsic physical (i.e. met-
rical) meaning. They are simply numbers that are used to label events in
spacetime which change when a different coordinate system is used which
may be linearly shifted or rotated with respect to the original one.

'7 In continuum theory this is the antisymmetric part of the tensor of the displace-
ment derivatives.
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Spacetime is a unification of space and time into one single (flat) manifold,
called Minkowski space'® which simplifies a large amount of physical theory;
in particular, it is the underlying structure to be used for the description of
events introduced in the special and general theory of relativity (for a formal
introduction see Sects. 3.6.1 and 3.6.2 in Chap. 3).

Ezample 2 (Special Relativistic Kinematics and Lorentz Transformations). An
event in spacetime is a point z* | (u = 1,2, 3,4) specified by its time and three
spacial coordinates, i.e. ¥ = (ct,Z), which are called Minkowski coordinates

D =ct,dt =z, 2=y, 2> =2. (2.6)
The quantity denoted by z* is often called four-vector (instead of “compo-
nents of a four-vector” ¥ = z%¢, with orthonormal basis €,€° = 6% = §,5).
The transformation between contra- (upper) and covariant (lower) compo-
nents is achieved by the metric tensor of Minkowski space, that is, the
Minkowski metric 7, cf. (3.16) on p. 139:

4
Ty = an,a:” = (ct, —72) . (2.7)
v=1

Using a Minkowski metric, the infinitesimal distance ds? between two events
(two points in Minkowski space) is given by ds? = c?dt? — dz' 2. The worldline
of an object, e.g. a particle, is the path that this particle takes in the spacetime
and represents its total history. In a sense, physical reality is given by all
the events described in spacetime. Applying the special principle of relativity
(see Sect. 3.6.1 on p. 166), one obtains for two different inertial frames of
reference X and X', cf. Fig. 2.8, the proper transformation laws of space time
coordinates, which are the linear Lorentz transformations:

' = Af 2 +a® (2.8)

where a® represents a time and space translation, and A3 € SO(3). The
group of Lorentz-transformations is called Poincaré group and contains (just
like the Galilei group) 10 parameters. The translations and rotations build
a subgroup of both, the Galilei group and the Lorentz group. In this sub-
group one normally excludes a change of handedness, i.e. Det(A) = +1.
In Minkowsik space, the scalar products of four-vectors are invariant un-
der Lorentz-transformations, i.e. Ag/l'ﬁy = ¢). For example, for two vectors

A = (A% A) and B* = (B°, B) the product A -B = A,B* = A*B, =
A°BO— AB. The Lor.entz-transformations are distinguished in that they leave
the proper time interval

18 After the mathematician Hermann Minkowski, mathematics professor at the Poly-
technikum ETH in Zurich and teacher of Einstein, who introduced this unifying
concept in a famous lecture at Cologne in 1908, see pp. 54-71 in [116].
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Fig. 2.8. A spacetime diagram in Minkowski space. Two coordinate systems X' and
X" move with velocity @ relative to each other. This configuration is called standard
configuration in special relativity theory. For simplicity, only two coordinates, x,
and ct (time expressed as distance traveled by light in time interval ¢, with the
conversion factor ¢ (velocity of light) are shown. A light signal (dotted line), e.g. a
flash travels at speed v = ¢, thus its worldline is represented as a bisecting line in
both coordinate systems. Let the coordinates of a certain event in X' be (¢,z). In
X, which moves relative to X with velocity ¥ in positive x-direction, the very same
event is described by coordinates (t',z")

3
dr? = *dt* — (dii)? =Y dada, . (2.9)
n=0

invariant, cf. Prob. 1. d7 is a Lorentz invariant and in the rest system of an
observer it coincides with the coordinate time. Taking the derivative of the
position four-vector with respect to 7 is also a four-vector, the four-velocity

IJ’.
dxt cdt di cdt dz dt dt
b = _— = _ — = — U

R (dT’dr) <dr’ di d7'> & @v. (210

To calculate 2 we go back to (2.9) which can be written as:
1 (di? 7\*
=@ (1-S (=) |=@)?1- (- : 2.11
(dr)? = (di) ( (%)) =@ g (211)

= =y, (2.12)

Hence,
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and dh
x
— = (e, 7). 2.13
7 =(7) (2.13)
Multiplying this equation with the invariant mass m yields the four-momentum
dz# E
Pt =mc? = mE = my(c,¥) = (—,ﬁ) . (2.14)
dr c

The invariant of the four-momentum is obtained by calculating the inner
product of p*:

" E* 2 2
SN phpu = o5 — P =mPe. (2.15)

This is the relativistic energy-momentum relation:

E =cy/(me)? +p2. (2.16)

In the rest-system of an observer (p'= 0) the energy is
Ey = mc?, (2.17)

an equation, that has been first derived by Albert Einstein in 1905 [117] and
in several later publications [118, 119]. For a photon (m = 0), for which no
rest system exists, the energy is £ = cp. In some textbooks on relativity, even
in the famous 1921 article by W. Pauli [120], a distinction between a rest mass
mo and a relativistic, velocity-dependent mass mg~y is made; this however is
deceptive, as the mass of a system is a fundamental property of matter and as
such an invariant, which does not change with the frame of reference. Thus,
it is important to understand that not mass, but rather the energy and the
momentum of a system depend on the state of motion of the observer. In the
reference frame in which the system is at rest (in its rest system), its energy
is not zero, but Ey = mc?, i.e. proportional to its frame-independent mass m.
Energy E and momentum p are both components of a four-vector (2.14), and
transform together when changing the coordinate system.

A light signal in the standard configuration of Fig. 2.8 travels at a speed
of ¢ = dx/dt. Therefore, ds* = 0 for light signals. Thus, it follows

ds'? = 2t —dx? = nagdx’o‘dx’ﬁ = 77(15/1;"/1?(1&10"(1&10‘s =ds = nygdx'ydx‘s =0.
(2.18)

Hence, by comparison, one obtains
AS AN = 195, (2.19)

The spacetime translations in (2.8) drop out when taking the differential

dz'* = A% da” . (2.20)
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Because of 2 = 22 and 23 = 2’ in the standard configuration of Fig. 2.8
one can write the transformation as

A3 AL 00

_ gy [ 464100
A== 10 (2.21)

0001

From (2.19) it follows:

(40)* = (49)% = 1, (2.22a)
(A})? + (A9)? = -1, (2.22b)
AJAY — AGAT =0 . (2.22¢)

As a solution of (2.22) one may set A? = —sinh© and A} = —sinh ©. This

yields
iy (AS A\ [ cosh® —sinh©
A= 45 = (/16 Al) 7 \~sinh® cosh® |- (2.23)

For the origin of X’ the following equation applies, cf. Fig 2.8:

2t =0=Ajct+ A} vt , (2.24)
and it follows:
tanho = A0 _ v _4 (2.25)
1n = —— = — = . .
Al e

With (2.21), (2.23) and (2.25) all matrix elements are fixed. Expressed as a
function of velocity v, the matrix elements are:

A=A =y=01-5)"2, (2:262)

A0 =gy vl (2.26D)

_ o2
02

As a result, the Lorentz-transformations are given by:

/ !

¥=qx-—vt), Y=y, =z, (2.27a)
ct' = y(ct — pz) . (2.27b)

These transformations allow for transforming spacetime coordinates from one
locally defined IS to another IS with its own local spacetime coordinates.
Thus, special relativity provides a fundamental insight into the structure of
spacetime, used in physical theory, in that each single observer has his own
set of coordinates, with which spacetime intervals between events are calcu-
lated. Hence, there is no global coordinate system that can be provided for
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all observers in inertial systems and likewise there is no common notion of
simultaneity.

A clock, that is at rest in system X in Fig. 2.8 displays the so-called proper
time 7 = t. Thus, the proper time between two events, measured by a clock
that is at rest in a frame of reference X' coincides with the coordinate time
and is a directly measurable quantity. In a new (primed) coordinate system
X’ with coordinates x“/, the coordinate differentials are given by

dz® = Agda” . (2.28)
Thus, the new coordinate time dr'? will be
dr'? = napda’dx’® = nag/li/l?dx)‘dxd = masdada? | (2.29)
and therefore
dr’? =dr . (2.30)
It is easy to see that for 8 = ¢ < 1, prefactor v = Zf:;o (_nﬁ ()" =~ 1in

zeroth approximation, thus yielding the approximatively valid Galilei trans-
formation (cf. (3.130) on p. 167), where time parameter ¢ does not depend
kinematically on the spacial coordinates, that is, on the arbitrarily chosen in-
ertial frame of reference. In this case, the underlying spacetime manifold has
the same global properties for all observers.

All so-called special relativistic “paradoxa’”, such as length contraction
(L' = L), time dilatation (#' = vt)'?, or the relativity of simultaneity are sim-
ple consequences of special relativistic kinematics. That is, they arise simply
because the numerical values of spacetime coordinates change when switching
between inertial systems.

In engineering contexts, similar kinematic properties arise with objects de-
fined in continuum theory such as the deformation or velocity gradients, when
they are transformed to a different coordinate system, see e.g. [123]. Usually,
the transformations considered in this context, are very special Fuclidean
transformations which include a translation of the system and an orthogonal
rotation, and the so-called “non-objectivity”2° of several quantities does not
come as a surprise as they are not defined as covariant?!' tensor equations.

It is important to realize that the changing coordinates (and their trans-
formation rules) are actually not the point of special (and general) relativ-
ity theory??, but rather those properties of spacetime, which are invariant

19 The most prominent application of this kinematic effect is the twin paradoz, see
e.g. [121, 122], which is based on the asymmetry between the twin that stays in
the same IS at home, and the one who travels, and has to accelerate, i.e. to switch
inertial systems, in order to return. For a recent treatment of the clock paradox,
see [122].

20 Non-invariancy of equations upon coordinate transformations.

21 See Sect. 3.3.8 on p. 156.

22 Thus in a sense, the term “relativity theory” is a misnomer and it had probably
better be called “theory of invariants”.
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upon coordinate changes, such as events as such, or the spacetime interval
ds? = c2dt? —di 2, which connects physical events in spacetime through time-
like (ds® > 0), spacelike (ds* < 0), and null (ds* = 0) worldlines. The im-
plications of this theoretical structure underlying classical physics are further
considered in Sect. 3.6.1 of Chap. 3 on p. 166.

2.4.4 Numerical Modeling and Simulation

Once a decision is made, a physical model is expressed in mathematical equa-
tions which (usually) can be solved in a systematic way, that is, in a way
that can be formulated as a finite stochastic or deterministic algorithm?® and
implemented as a computer program. The numerical solutions of the govern-
ing equations associated with the physical and mathematical model are then
interpreted and provide answers to the specific real system which was trans-
formed into the model system. In Table 2.2, several key classification aspects
in physical and mathematical modeling are collocated. A comparison of the
answers for a specific problem obtained by mathematically exploiting a spe-
cific model, finally provides some ideas about the general validity and the
quality of a model system and the derivations and theoretical concepts asso-
ciated with it. This principal procedure in physical and numerical modeling
is illustrated in the flowchart of Fig. 2.9.

2.5 Unification and Reductionism in Physical Theories

In Sect. 2.3 it was stated that on the one hand one has to isolate a system
in order to extract the fundamental, universal laws; on the other hand, the
natural sciences — and in particular physics — are very much focused on unify-
ing different approaches, models and theories, i.e. to reduce existing systems
to ever more consistent and fundamental systems that include an ever larger
part of observed reality. This paradigm of “reductionism” expresses the idea

Table 2.2. General key aspects to be considered in the development of physical and
mathematical models for simulation applications beyond the atomic scale

Classification Example

spatial dimension 1D, 2D, 3D

kind of discretization particles, super particles, continuum (fields)

spacial scale macroscopic, mesoscopic, microscopic, nanoscopic

state variables strain, displacement, dislocation density, temperature
material properties Hooke’s law, Taylor equations, multiparameter plasticity

degree of predictability ab initio, coarse-grained, phenomenological, empirical

2% For a definition of “algorithm”, see Sect. 2.6.
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Physical Phenomena
Start :> (Experiments)
Heuristics, ab initio,

Phenomenology, Temporal
®:>Physical Model/ Theory <:: and Spacial Scale, State

Variables

@i

Mathematical Model <: Differential Equations
State Equations

Kinematic Equations
Model Parameters

&

. YES
Analytically .
Solvable? :> Closed Form Solution
@ NO Efficdent Algorithms
Numerical Model <:I Observables, Averages,
Input/ Qutput

Desired Precision

&

Computer Code <::| Parallelization / Optimization

O

Calculate Model <: Display / Visualize / Interpret

Observables
: YES

Validation ? |::> End

NO
<:| Iteratively Improve Model

Fig. 2.9. Principal physical, mathematical and numerical modeling scheme illus-
trated as flow chart. Starting from the experimental evidence one constructs physical
theories which determine in principle what can be measured. A mathematical for-
mulation usually leads to differential equations, integral equations, or master (rate)
equations for the dynamic (i.e. time dependent) development of certain state vari-
ables within the system’s abstract state space. Analytic solutions of these equations
are usually rarely possible, except for simplified approximation usually due to sym-
metry. Thus, efficient algorithms for the treated problem have to be found and
implemented as a computer program. Execution of the code yields approximate nu-
merical solutions to the mathematical model which describes the dynamics of the
physical “real” system. Comparison of the obtained numerical results with exper-
imental data allows for a validation of the used model and subsequent iterative
improvement of theory

that it is possible to understand the functioning of arbitrary complex (phys-
ical, chemical, biological) systems by reducing them to simpler and smaller
systems and by applying the laws of nature to these subsystems. A pessimist
could say, that this “fool-proof philosophy” has not led to anything that goes
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beyond old Platonist concepts of “ideal forms” that are hidden behind the
empirical observations (see e.g. Chap. 4 in “The Presence of the Past” by
R. Sheldrake [124]), but its simplicity is very attractive and has led to the
successful unification of different theories of physical phenomena during the
last 200 years, see Fig. 2.10.

Grand Unifying Theory (GUT) ?

Theory of General Relativity Theory Quantum Field Theories
Theory of Special Relativity Quant
uantum
Electromagnetism Chromodynamics
Statistical Mechanics Strong Force
Thermodynamics 1
Heat Gravitation E'Iectroweak
Theory
Electricity
Optics
Mechanics | Quantum Theory |

Fig. 2.10. Reductionism in physics. Important unifications of classical physical
theories based on the concepts of particles and fields are summarized on the left.
Unifications based on quantum theory are displayed on the right. By extending the
Galileian principle of relativity to all processes in physics including electrodynamics,
the special theory of relativity (SRT) (1905) could reconcile the apparent disaccord
between Newton’s system of classical mechanics (1687) and Maxwell’s equations
(1865). Combining SRT with Quantum Theory (1925) yields Quantum Field The-
ory (1931) in which fields are treated as operators in Hilbert space, which obey
commutator relations and which gives rise to the concepts of antimatter and parti-
cle annihilation and creation out of the vacuum (Dirac’s hole theory). Within this
framework, the fundamental weak force and electromagnetism could be united in
the electroweak theory and the strong interactions of hadrons could be explained
in a dynamic theory of quarks, called quantum chromodynamics, (QCD) (1970).
Thus, three of the four known fundamental interactions have been unified in more
general quantum field theories; gravitation, the weakest of the four interactions,
which was transformed from a theory with action at-a-distance (1687) into a proper
non-instantaneous field theory by the general theory of relativity (1915), might be
unified with the other forces in an all-embracing “theory of everything”, or GUT, a
“Grand Unified Theory”
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The paradigm of reductionism is carried to extremes in modern high en-
ergy particle physics. Here, it led to the successful development of the standard
model in the 1960s and 70s, which explains the structure of subatomic parti-
cles and all fundamental interactions, gravitation excepted, by the existence
of structureless, pointlike elementary spin 1/2 particles, called “quarks” and
“leptons” along with their associated symmetries. The model is referred to as
“standard”, because it provides a theory of all fundamental constituents of
matter as an ontological basis.

In this section, for the sake of completeness, we end our discussion of model
building with a short (and very superficial) presentation of the ideas pertaining
to this fundamental theory and its range of application. The interested reader
is referred to specialized literature, see Sect. 2.5.5 on p. 77.

2.5.1 The Four Fundamental Interactions

According to our present knowledge, there are four known fundamental inter-
actions, see Table 2.3 and compare Fig. 2.10:

1. weak interaction (the force related to S-decay);
2. strong interaction (nuclear force);

3. electromagnetic interaction (Coulomb force);
4. gravitational interaction.

The two nuclear forces (1) and (2) do not pertain to any human everyday
experience and are very short ranged. They are treated within the framework

Table 2.3. In modern physics, it is assumed that all interactions between particles —
and thus, the totality of physical reality — can be described by four fundamental
interactions. Each fundamental force has a certain interaction range. In two cases,
the range is infinity. The relative strength of the forces can be compared when
using natural units such that the forces can be assigned dimensionless numbers.
The gravitational interaction in these natural units is about 39 orders of magnitude
weaker than the strong interaction. Table compiled from [125, 126]

Weak Strong Electromagnetism Gravitation
Range <<107®m  107% m 00 o0
Example [(-decay of atomic forces between forces between
atomic nuclei nuclei charges astronomic objects
Strength  Grermi = g’ ~1 e? =1/137 GNewton =
1.02 x 107° 5.9 x 10727
Affected  quarks/ quarks charged all
particles leptons particles
Exchange vector bosons gluons g; photon v Higgs H

particles W%, 7° (i=1,..,8) (graviton)
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of non-Abelian?* quantum field theories which couple the special principle
of relativity with quantum theory. The strong interaction, which keeps pro-
tons and neutrons in the nucleus together, has a range of 1071° m. The weak
interaction finally even has such a short range (<1077 m) that it only mani-
fests itself in certain particle collisions or decay processes. Weak interactions
form the first step in the nuclear chain reaction in the interior of the sun,
where two protons fuse and a deuterium nucleus, a positron?® and a neutrino
come into being. These two interactions can be neglected in the atom except
within the nucleus and thus they can be completely neglected in conventional
engineering applications and in most applications in physics. The so-called
first-principles, or ab initio calculations (discussed in Chap. 5) only take into
account electromagnetism (3) and gravitational forces (4) in the framework of
non-relativistic quantum mechanics. Technically speaking, ab initio methods
solve the Schrédinger equation to determine the electron density distribution,
and the atomic structures of various materials.

Gravitation is the weakest of all fundamental interactions, see Table 2.3,
but plays a dominant role on a cosmic scale, because the planets and stars
in galaxies are large agglomerations of electrically neutral masses. Hence, the
electromagnetic interaction between electrons and atom cores is in principle
responsible for all chemical and physical properties of ordinary solids, fluids
and gases. Compared to continuum mechanics methods, atomic scale simula-
tions are truly ab initio. However, even in ab initio methods, there are several
approximations involved in simulations of the quantum state of many electron
systems, e.g. the Born-Oppenheimer approzimation, discussed in Chap. 5.

2.5.2 The Standard Model

According to the current standard model of elementary particle physics based
on quantum field theory, the fundamental ontology of the world is a set of
interacting, quantized fields, which arise as two types of fields in the standard
model: matter fields and interaction fields, cf. Fig. 2.11.

The quanta of matter fields, called fermions, have half-integral spins. They
obey Pauli’s exclusion principle which is the basis of structured matter: only
a single fermion can occupy a particular quantum state. The quanta of the
interaction fields, or bosons, have integral spins and thus, many bosons can
occupy one quantum state?. There are 12 matter fields, organized in three
generations, or families, and each has its antifield, cf. Table 2.4.

The higher generations are just replicas of the first generation with short
lifetimes and show up only in high energy cosmic rays or in certain particle
reactions in accelerators. All stable matter in the universe according to this

24 For the definition of an Abelian group, see Box 2.1 on p. 65.

25 The positron e* is the antiparticle of the electron e~ .

26 For example, a coherent laser beam comprises billions of photons oscillating in a
single state.
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Fundamental Particles

Fermions Bosons

Leptons Quarks Photons
l Gluons
Vector Bosons
Electrons I |l\/|uons I |Neutrinos | Hadrons Graviton
Mesons Baryons
(Quark-Antiquark Pairs) (3 Quarks)

Fig. 2.11. The fundamental particles according to the standard model are the
fermions (particles with spin 1/2) and the bosons (particles with integral spin or
spin 0). The fermions split into the quarks, of which the hadrons — particles of the
strong interaction — are made, and the leptons, which do not participate in the
strong interaction. Baryons are triplets of quarks, such as the proton (uud) or the
neutron (udd) and mesons consist of quark-antiquark pairs, e.g. the pion (du)

model is made up of only three matter fields of the first generation: electron
(e7), up quark (u), and down quark (d) fields. Protons (uud) and neutrons
(udd) are made of quarks and are the constituents of atoms. The neutrinos
interact weakly with everything and are not part of stable matter. All particles
listed in Table 2.4 are elementary, i.e. they have no known substructure; this,
however, does not exclude their decay into other particles, e.g. the myon p~
may decay into an electron and two neutrinos (the electron antineutrino and
the muon neutrino) according to p~ — e~ + . + v,,. The possible number
of decay processes is restricted by empirical conservation laws of quantum
mechanical quantities; some examples are listed on p. 67, in Table 2.6 and the
examples on p. 68.

The interaction fields are permanently coupled to the matter fields, whose
charges are their sources. For example, the electric charge is the source of the
electromagnetic field, and the color charges of the quarks are the source of the
strong interaction. Fundamental interactions occur only between matter and
interaction fields, and they occur at a point. The mathematical form of the
point coupling for the nuclear forces is the same as in the case of the electro-
magnetic field and can be graphically represented as Feynman diagrams, cf.
Fig. 2.12. For this classical field, R.P. Feynman (1918-1988) [127], and inde-
pendently J.S. Schwinger (1918-1994) [128] and S. Tomonaga2” developed a
theory, quantum electrodynamics (QED), which is consistent with quantum
theory and which allowed to calculate probability amplitudes, cross-sections

27 The three shared the Nobel prize in 1965.
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Table 2.4. There are 12 known elementary particles called fermions (quarks and
leptons) and 4 exchange particles according to the standard model of elementary
particle physics. The particles, which are sources of fields, are listed along with their
quantum numbers B, L, their charge @, and their masses m. Each particle also has
an antiparticle (not listed); ordinary stable matter is made of particles of the first
generation only. The other particles show up only in high-energy experiments for
very short time intervals. All exchange particles except the vector bosons are stable.
Table compiled from [125, 126]

Generation Spin Baryon Lepton Charge
1 2 3 S B L Q
Quarks

u (up) ¢ (charm) t (top) 1/2  1/3 0 +2/3
m=5MeV m=15GeV m=174GeV

d (down) s (strange) b (bottom) 1/2  1/3 0 -1/3
m =10 MeV m=200MeV m =4.7GeV

Leptons

Ve Vu Vr 1/2 0 1 0
m~ 0 m ~ 0 m~ 0

e wo T 1/2 0 1 -1

m=0.511 MeV m=105MeV m =1.7GeV

Exchange Particles

Photon (stable) vy 1 0 0 0
Gluons (stable) gi,i=1,..,8 1 0 0 0
Vector Bosons  (~ 1072 s) Z,W* 1 0 0 0,£1
Higgs (stable) H 2 0 0 0

and decay rates for the electromagnetic interaction. This theory was the only
consistent, that is, renormizable quantum field theory until the t'Hooft publi-
cation in the 1970s [129]. It became the prototype of all subsequent quantum
field theories. The standard model has been tested to 1078 m and at present,
there is no known contradiction to any experiment. Table 2.5 gives a selected
overview of important discoveries in the field of elementary particle physics;
several of these were later awarded the Nobel prize, e.g. the discovery of the
{27 -particle, which had been theoretically predicted with correct properties
due to the SU(3) symmetries of quark theory, cf. Fig. 2.13.

2.5.3 Symmetries, Fields, Particles and the Vacuum

The four fundamental forces, or interactions emerge from the exchange of par-
ticles, so-called bosons, which is depicted schematically in Fig. 2.12. The basic
objects of this fundamental physical picture of the world are the concepts
of field, particle, vacuum and their underlying symmetries. These symmetries
used in the quantum field theories of the standard model build the mathe-
matical ontology of physics.

At the beginning 20th century it was realized that classical physics is in-
adequate for the description of quantum structures. In 1925, non-relativistic
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Fig. 2.12. Matter fields are represented in Feynman diagrams as straight lines and
the interaction fields by wavy lines. Displayed are examples of the electromagnetic
interaction between electrons (e) (left) and the strong interaction between quarks
(q) (right). Feynman diagrams are a graphical way of representing the contributions
to the scattering S-matriz elements in perturbation theory, which can be applied,
if the theory is renormalizable

quantum theory was established and quickly became the basis of a large part
of physics, including atomic, molecular and solid-state phenomena. However,
in nuclear and high-energy physics, this theory is unsatisfactory because it is
incompatible with the principle of special relativity advanced by Einstein in
1905 [154]. Dirac formulated quantum field theory (QFT) by uniting quantum
mechanics and special relativity in 1930 [137, 138], predicting the existence of
a new particle, called “anti-electron”, then unknown to experimental physics,
having the same mass and opposite charge of an electron. He further pre-
dicted that this new stable particle could be produced in a high vacuum by
an “encounter between two hard ~-rays (of energy at least half a million
volts)”, leading “simultaneously to the creation of an electron and an anti-
electron” [137]. Quantum field theory introduced into physics the concept of
anti-particles and the concept of creation (and annihilation) of new particles
from pure energy, thus changing also the scientific notion of the “vacuum”2®.
The anti-particle of the electron (e™) was experimentally discovered in 1933
by C.D. Anderson [140].

The extension of Dirac’s relativistic quantum theory to include nuclear
interactions took another 25 years. During this process, gauge fields, i.e. fields
with local symmetries, the idea of which first appeared in the general theory of
relativity (in the form of varying orientations of local inertial frames), became
dominant. Weyl tried to generalize this idea and suggested that the “scale” of

28 In Dirac’s hole theory a “vacuum” is interpreted as the negative energy spectrum
of the solutions of his equation. The holes in the “Dirac sea” of negative energies
were first interpreted by Dirac as protons [138], but this idea was quickly aban-
doned under the impression of several arguments put forward by W. Pauli and
others.
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Table 2.5. A selection of important discoveries in the history of elementary particle

physics

Year

Discovery

Reference

5th century BC

1789
1868
1896
1905
1911
1911
1915
1925
1930
1930
1932
1932

1948/1949

1956
1961

1964

1964
1961-1969

1972
1973

1974
1974
1983
1995

4 basic elements in Greek philosophy:

earth, air, fire and water
List of 30 Elements

Periodic Table of Elements
Electron

Special Theory of Relativity
Atomic Nucleus

Nucleus and Shell Model of Atoms
General Theory of Relativity
Quantum Theory

Quantum Field Theory
Prediction of Neutrino
Neutron

Positron

Quantum Electrodynamics (QED)

CP-Violation
Eightfold Way

Quark Model
(2™ -particle
Electroweak Theory

Quantum Chromodynamics

Asymptotic Freedom of Quarks

J/y-particle

Renormizability

Intermediate Vector Bosons W, Z+
Top Quark

The Presocratics [69]

Lavoisier [130]
Mendeleev [131]
Thomson [132]
Einstein [117]
Rutherford [78]
Bohr [133]
Einstein [134, 135]
Heisenberg [136]
Dirac [137, 138]
Pauli [15]
Chadwick [139]
Anderson [140, 141]
Schwinger [128],
Feynman [127],
Tomonaga

Landa et al [142]
Gell-Mann [143]
Gell-Mann [144],

Zweig [145, 146]

Bernes et al [147],
Glashow [148],
Weinberg [89],

Salam [149]

Fritsch, Gell-Mann [150)]
Politzer [77],

Gross, Wilzek [75, 76]
Aubert et al [151]
t’Hooft [129]

Rubbia et al. [152]
Abe at al. [153]

local frames should also be allowed to vary, so the frames would be enlarged
or reduced as one goes about in the manifold?®. The variation of the frame’s
scale would be reconciled by the electromagnetic field, just as the variation
of their orientation is reconciled by the gravitational field. Weyl called this
“Eichinvarianz”, which was translated into English in the 1920s as “gauge
invarance”. Weyl’s idea did not work; Einstein pointed out that the proposed

29 For a discussion of the importance of manifolds in modern physical theory, see

Chap. 3.
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Fig. 2.13. Bubble chamber photograph (left) and line diagram (right) of event
showing the first {27 -particle. An incoming K~ -meson interacts with a proton in
the liquid hydrogen of the bubble chamber and produces an 27, a K° and a K™
meson which all decay into other particles. Neutral particles which produce no tracks
in the chamber are shown by dashed lines. The presence and properties of the neutral
particles are established by analysis of the tracks of their charged decay products
and application of the laws of conservation of mass and energy. Photo courtesy of
Brookhaven National Laboratory

scale change renders the rate of a clock dependent on its history, which is not
acceptable. With the development of a quantum theory in mid 1920s, it was
realized that what varies from point to point is not the scale but the phase
of the electron wave function. However, the old names “gauge invariance”,
“gauge fields” and “gauge theories” are still prevalent®C.

The electromagnetic field is not self-interacting, that is, its field quanta, the
photons, do not carry electric charge; thus, the photons do not stick together
to form a “light ball”. Mathematically, this feature can be seen in the fact that
the local symmetry group of electromagnetism is commutative, or Abelian, cf.
Box 2.1. In contrast, the symmetry groups of the nuclear interactions are non-
commutative, or non-Abelian. The reason for this is that the field quanta of
the weak and strong interactions carry coupling charges and thus interact with
themselves, whereas the photon is massless and does not carry charge. This is
what makes non-Abelian theories more complicated than electromagnetism.

In physical literature, the term “field” has at least two different conno-
tations. First, a field is a continuous dynamical system, i.e. a system with
an infinite number of degrees of freedom. Second, a field is also a dynamical

30 If one were to rename gauge fields today, they would probably be called “phase
fields” as the symmetry with matter fields is with respect to their phase, not to
some length scale.
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Box 2.1 Definition of a Group, Abelian group

A group G is a set of elements {g;} with a single rule of composition o such that:

a) G is closed, i.e. for any two elements g1,92 € G ,g10g2 € G,

b) The composition is associative; i.e. g1 0 (g2 0 g3) = (g1 0 g2) 0 g3 ,

¢) G contains an identity element e such that for all g € G, goe=eog=yg,
d

) For every g € G there exists an inverse element g~' € G such that

gogl=glog=e.

(
(
(
(

A group G is commutative or Abelian, if g1 0 g2 = g2 0 g1 for all g1,g2 € G.

variable characterizing such a system or at least some aspect of a system.
The description of field properties is local, concentrating on a point entity
and its infinitesimal displacement. Literally speaking, the world of fields is
“full”, whereas in the mechanistic world, particles are separated by empty
space across which forces act instantaneously at a distance.

According to the principle of special relativity, no signal can travel at a
velocity faster than the velocity c¢ of light; thus, ¢ determines an upper bound
at which forces between particles can act. For the conservation laws of energy-
momentum to be valid at every moment in time, one assumes that a particle
gives rise to a field in its surrounding space which transports energy and
momentum. Taking into account that energy and momentum is quantized one
is led to the identification of these field quanta as particles. Thus, combining
special relativity and quantum mechanics naturally leads to the concept of a
field theory in which the fields are quantized themselves and are made up of
“exchange particles”, the field quanta.

Symmetries

SRT rests on two simple postulates: the principle of special relativity and
the constancy of the speed of light. The general theory of relativity (GRT)
also has two fundamental postulates: the principle of general relativity and
the equivalence principle. Here, we are interested in one aspect of these prin-
ciples, namely the idea of symmetry. Each principle specifies an equivalence
class of coordinate systems which constrains the content of a physical the-
ory. Whatever these constraints may be, the idea of the principles is that
certain physical quantities are invariant under certain groups of coordinate
transformations; stated in this way the principles are symmetry principles as
they state invariance of a system against certain symmetry operations which
transform the object back into itself or which leave the object unchanged or
invariant. The set of symmetry transformations form a group. A group is an
algebraic structure with a single rule of composition, cf. Box 2.1.

The invariant features of symmetries are usually the focus of interest.
For example, the invariants under the Galilean group of transformations are
the time interval as well as the spacial distance and one invariant under the
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Box 2.2 SU(2) Symmetry
A set of operators J; € C*? which obey the relation

[JZ‘,Jk] = i€k ] (i,k,l S {1,273}) (2.31)

is called an SU(2)-algebra. A possible representation of this algebra is given, e.g. by
the Pauli matrices. Setting

1/01 1/0—i 1/10
J1_§<10)’J2_§(10)"]3_5(0—1)7 (2.32)

one easily shows that the commutator relations of (2.31) are fulfilled. The quantities
J; are called generators of the group. If a Hamilton operator is invariant under the
transformations of a group, then it commutes with the generators, i.e. in the case of
SU(2) symmetry it commutes with the J;.

U= exp (—123: ¢ij> (233)

j=1

are the special unitary transformations in 2D where ¢; is a field variable.

Lorentz group is the spacetime interval dr? = c2dt? — d#?. In mathemat-
ics, in general, the profoundity of a concept is associated with its generality;
thus, the largest transformation group defines the most fundamental concept.
A system, characterized by a large symmetry group retains only the impor-
tant features. In elementary particle physics, one seeks ever larger symmetry
groups in the attempt to ever larger unification. For example, the electro-
magnetic interaction is characterized by a unitary group of order 1, U(1),
the weak interaction by the special unitary group SU(2), see Box 2.2, and
their unification in the electroweak interaction is achieved by the larger group
SU(2) x U(1); thus, the standard model is based on the U(1) x SU(2) x SU(3)
symmetry. In QED, demanding U (1) gauge invariance means that the theory
is supposed to be invariant under the transformation y(z) — exp(ia(z))y(x),
where exp(ia(z)) is a local phase transformation, whereas the transformation
is global if o(x) = const. For more details on groups and their properties, the
reader is referred to more specialized literature, cf. Sect. 2.5.5.

The symmetry SU(3) underlies the strong interaction which treats u, d,
and s quarks as equivalent, see Box 2.3. If the symmetry group of a physical
system is reduced to one of its subgroups (for example, the SU(2) isospin
symmetry is a subgroup of SU(3)), one says that the symmetry is broken. As
a result of a broken symmetry, one obtains more invariants and more features.

Conservation Laws

Another important group of general principles are conservation laws which
are a consequence of underlying symmetries in a system, usually expressed
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Box 2.3 SU(3) Symmetry

Let U be an unitary n X n matrix, i.e. U € U(n), U'U =1 and H an hermitean
n X n matrix. Then U can be written as

U =exp(iH) . (2.34)

As H is hermitean, there are n? independent, real parameters for H and U. With
det(U) = 1, the matrices U build the special unitary group SU(n), which, due to
(2.34), depends on n? — 1 parameters \,, which are called generators. It can be
shown that

det(U) = det(exp(iH)) = exp (ITrH) . (2.35)

It is
U = exp (—iaw ), (2.36)
H=—ia\, . (2.37)

and
Tr(Av) . (2.38)

Hence, the n® —1 = 3% — 1 = 8 traceless generators of SU(n) have to be traceless
matrices. It is common to introduce the following convention for the generators:
Jj=3X

010 0-i0 1 00
M=[100], Xx=[i00], xs=[0-10], (2.39a)
000 000 0 00
001 00 —i 000
M=]000], x=[000], xe=[001], (2.39b)
100 i0 0 010
00 0 L (00
M=100-i], M=—[010 |, (2.39¢)
0i 0 V31002

The corresponding representation of the group is exp(—% Z]. ¢iAj). One obtains
different representations by finding eight different generators, which obey the same
commutator relations as the J;, i.e. [Ji, Jx| = ifiri i with the antisymmetric quan-
tities fix:. Instead of Js and Js, the corresponding quantum numbers in physics are
called isospin and hypercharge.

in the Hamilton operator H (in quantum systems) or the Hamilton func-
tion H for classical systems. For example, if %—i] = 0, that is if H is time-
independent, energy is conserved and H = E = const. Homogeneity of space
(H is invariant against translations) leads to conservation of momentum, and
isotropy of space leads to conservation of angular momentum. In the following,

some important conservation laws are listed.

e Conservation of energy-momentum
e Conservation of angular momentum
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e Conservation of baryon number B (nucleons and hyperons®' are as-

signed +1 and their anti-particles are assigned —1)

e Conservation of lepton number L (v.- and e~ are assigned +1 and their
anti-particles get —1)
Conservation of isospin I, (only valid for the strong interaction)
Conservation of strangeness S (valid for the strong and electromagnetic
interaction but not for the weak interaction)

e Conservation of parity P (valid for the strong and electromagnetic inter-
action but not for the weak interaction)

The general connection between symmetries and conservation laws is pro-
vided by two theorems published by Emmy Noether in the article “Invariante
Variationsprobleme” in 1918 [155]. Table 2.6 shows a selection of important
conserved quantities and the — according to Noether’s theorem — associated
symmetries.

Ezample 3 (Some Particle Decays).

e Myon decay:
The process =~ — e~ + V. + v, is allowed. It obeys conservation of myon
lepton number 1 — 040+ 1 and electron lepton number 0 — 1+ (—1)+0.
The process u~ — e~ + 1, violates conservation of L.
e Proton decay:
The process p — eT v violates conservation of B.
e Flectron decay:
The process e~ — p~ + v, + v, is forbidden, as me < my +my, +my,,.
e Neutron decay: The process n — p + e~ + U, obeys the conservation of
electron lepton number: 0 — 0+ 1 4 (—1).

Exercise 1. Which one of the four neutrinos (ve, 7, vy, 7,) cf. Table 2.4 on

p- 61 is involved in the following reactions?

Table 2.6. Some conserved quantities in elementary particle physics and their as-
sociated symmetries due to Noether’s theorem

Conserved Quantity Symmetry

Four-momentum p* = (Etot/c2,ﬁtot) Spacetime translation

Electric charge @ Gauge invariance

Baryon B and lepton L numbers SU()g, SU(1)L

Only electromagnetic interaction

Parity P Reversion of spacial configuration
Time reversal T’ Direction of time

Charge conjugation C' Matter «+» Antimatter

31 Hyperons are baryons with a strangeness quantum number
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(a) (M) +p—n+eh,
b)) +n—=p+pu,
() ()+n—pt+e .

Solution 1. Considering different conservation laws stated above, the answers
are:
(a) 7e (D) () veo

2.5.4 Relativistic Wave Equations

The canonical starting point for quantum field theories is the variation of the
classical integral of action

ta
S = dt / >z L(¢,0,0) , (2.40)
ty

with Lagrangian density L£(¢(x), 0, ¢(x)), which is a function of the field ¢(z)
with an infinite number of degrees of freedom, and its four-gradient 9,,¢(z) =
0/0z, = (0/0ot, —V). Performing a variation § of the integral in (2.40) and
applying Hamilton’s principle (65 = 0) as well as the boundary conditions
(0g(t1,Z) = 0 = d¢p(ta, X)) of (2.40), one obtains the equation of motion for
the fields, i.e. the Euler-Lagrange equations:

5 0L oL
"0(0ud(x))  06(x)

The field equations (2.41) are covariant, if the Lagrangian density is Lorentz
invariant, i.e. a Lorentz-scalar. Due to the boundary conditions of the vari-
ation, they are not changed, when a total divergence d,A with some field
A is added to the Lagrangian density. The symmetries of the field equations
and the quantum numbers of the elementary particles are obtained from the
symmetries of the Lagrangian density. The same formalism is used in classical
mechanics for deriving equations of motion from a classical Lagrange func-
tion L(q’,q"), which is a function of generalized coordinates and velocities,
see Box 2.4.

=0. (2.41)

Ezample 4 (Lagrangian Density of Mazwell’s Equations). Introducing the
four-potential

-,

AP = (D, A) (2.45)
in Minkowski space and the antisymmetric field tensor.
FH = VAP — OFAY = —F"F | (2.46)

with

0 E Ey Ej
—FE1 0 Bs —B;
—FE, —Bs; 0 B ’
—FE3 B, —B; 0

P = (2.47)
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Box 2.4 Lagrangian formulation of Classical Mechanics
The classical equations of motion are obtained by applying Hamilton’s principle of
least action. A variation ¢ of the integral of least action

t2 o
s;/ dt (g, ) , (2.42)
t

1

where L(¢, ¢') = T—V, the difference between kinetic and potential energy, depends
on the generalized coordinates and velocities. Using

t o
08 = 6/ dt L(¢",¢") =0, (2.43)

ty
with fixed boundaries ¢; and ¢ of the integral in (2.43) yields the particle trajectories

q (t) for which the action S is minimized, i.e. stationary. These equations are called
Euler-Lagrange Equations (see. Prob 3 on p. 106).

d (9L 0L
- (aqi) ok (2.44)

where a short-form 0¥ of the four-gradient was used. The co- and contravariant
four-gradients and the operator of the wave equation [J are defined as:

0 190
%=g50 = (oY) (250
,_ 0 (10
=g = (EE’_V) , (2.48D)
, 102

Maxwell’s equations (2.3)a—d can be derived from the Lagrangian density

1
L= 1PME, A 2.49)
in covariant form as
OPFW 4 QHFYA 4 gV FM = gl = | (2.50a)
O F™ =0, (2.50b)
DM = —jv . (2.50¢)
In (2.50)a we have used the notation of antisymmetry brackets “[]” which

are used to denote antisymmetric components of tensors®?. Using (2.50)a and
(2.50)c, one obtains the covariant form of the continuity equation

32 For example, T“b[cd] = %(T“bcd —T%%).



2.5 Unification and Reductionism in Physical Theories 71
8, 5" = —0,0,F" =0, (2.51)

with the source four-vector

3 = (p(x), j(2)) - (2.52)
Maxwell’s equations do not change under the transformation
Au(@) = Ay(a) = Ay (@) + 0,0() | (2.53)

where @(x) is some scalar field. Due to this gauge invariance, one can impose
the Lorentz gauge condition
0, A" =0, (2.54)

which does not change the fields, i.e. the physics.

In Quantum field theories, both, the mass fields (fermions) and the inter-
action fields (bosons) are described as operators in Hilbert space which obey
certain commutation relations and manipulate the fields. The Schrodinger
equation reads

oY
Hip = ih—— | 2.55
y=ins (25)
and it describes non—relativistig spinless point particles, with the energy op-
erator H = H(P,z) = H(2V,z). In non-relativistic quantum mechanics

H=7T+YV where T = % is the operator corresponding to non-relativistic
kinetic energy T' and momentum p, respectively, i.e. v < ¢, and V is the po-
tential energy. In (2.55) v is the wave function describing the single particle
amplitude. Usually, in quantum field theory, symbol 1) is reserved for spin 1/2
fermions and the symbol ¢ is used for spin 0 bosons. For relativistic particles
(v ~ ¢), the total energy E is given by the Einstein relation E? = P? + m?2.
Thus, the square of the relativistic Hamiltonian H? is simply given by pro-

moting the momentum to operator status, i.e.:
H? — H?* = P22 + m?c*. (2.56)

Working with this operator in (2.55) and inserting the momentum operator
in position space P — —%V, one yields the Klein-Gordon equation

(D+ (%)2>¢)(3§) ~0, (2.57)

In (2.57) the box notation was introduced, cf. (2.48) on p. 70:
0 =9,0" =82/0t> -V, (2.58)

Equation (2.57) is the classical homogeneous wave equation for the field ¢(z).
The operator [ is Lorentz invariant, so the Klein-Gordon equation is rela-
tivistically covariant, that is, it transforms into an equation of the same form,
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provided that ¢ is a scalar function. Thus, under a Lorentz transformation
(ct, &) — (ct', &),
o(t, %) — ¢ (t', 7). (2.59)

The Klein-Gordon equation has plane wave solutions of the form:
¢(x) = Ne "FI-P) (2.60)

where N is a normalization constant and E = &£+/c2p? + m2ct with positive
and negative energy solutions. The negative solutions for FE render it impos-
sible to interpret the Lorentz invariant ¢ as a wave function of a particle (as
in non-relativistic quantum theory), because |¢|?> does not transform like a
density. The spectrum of the energy operator is not bounded and one could
extract arbitrarily large amounts of energy from the system by driving it into
ever more negative energy states. Also, one cannot simply throw away these
solutions because they are needed to define a complete set of states. These
interpretive problems disappear if one introduces the idea of a quantized field
and considers ¢ as a a quantum field in the sense of a usual dynamic variable.
In this case, the positive and negative energy modes are simply associated
with operators that create or destroy particles.

Historically, due to the above mentioned problems in interpreting ¢ as a
wave function and to define a probability density (see Problem 4), Dirac tried
to find a different equation of first order with respect to time derivatives,
hoping that this similarity to the non-relativistic Schrédinger equation would
allow such an interpretation. It turned out that Dirac’s hopes were in vain, but
he did find another covariant equation which allowed for negative solutions,
too. His Ansatz was a Hamiltonian of the form

3
H=>_ aP;+pmc*, (2.61)

where P; are the three components of the momentum operator P = ?ﬁ It
can be shown that from the requirement H? = H? + m?2c?* it follows that «;
and 0 must be interpreted as 4 x 4 matrices, and the considered field ¢ as
a multi-component spinor ¥, on which these matrices act, thus yielding the
position space Dirac equation

81/1 N 3 N
in 8: = —ihcy ( Qi + Y ﬁwm&) Uy (2.62)
7=1 \i=1 T=1
N
=Y Hortbr . (2.63)
=1

The following combination of matrices is useful for a symmetric formulation
of (2.62) in spacetime:

7 =B,7" = Ba; ,(i=1,2,3). (2.64)
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The quantities v* may be combined to define a four-vector in Minkowski space

v = (0,442, 9%, and v, = gy’ = (90,71, 725 73) (2.65)

thus yielding the covariant Dirac equation:

4
(ih > 40 — me)e = (ih P —me)y =0, (2.66)
i=0
where in the second term Feynman’s “dagger-notation” was used, i.e.:
L& o A0 .
=X = b =—— 4+ 9V. 2.67
o =N l;’yax# proril (2.67)

The Dirac equation is the equation of motion for the field operator ¢ de-
scribing spin 1/2 fermions. From (2.67) one can derive a Lorentz-invariant
Langrange density for free Dirac particles:

4
L=p@h> 5 —mey (2.68)
=0

where 1) is the adjungated field. Variation §% in (2.68) yields (2.62) and vari-
ation 01 yields the adjungated Dirac equation.

Local Gauge Symmetries

Quantum mechanical expectation values of observables

© = [vov (2.69)

and the corresponding Lagrange functions are invariant against phase rota-
tions of the field function ¥ (x):

b(x) — ¥/(2) = explia)u(a) (2.70)

If o is a constant angle, then the U(1) gauge invariance (2.70) is global and,
according to Noether’s theorem, leads to conservation of electric charge Q.

Exercise 2 (Show that SU(1) symmetry leads to conservation of

charge Q).
The global SU(1) symmetry rotates the phase of a field ¢ according to:
d(z) — ¢/ (z) = exp(iQa)¢p(z) , (2.71a)
¢*(z) — ¢*'(z) = exp(~iQa)¢*(z) . (2.71b)
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The infinitesimal rotation of the fields is thus:

¢(z) = ¢'(z) = ¢(2) + do(z) = ¢(z) +iQ(6a)d() , (2.72a)
¢*(z) = ¢"'(z) = ¢*(2) + 06" (x) = ¢*(2) — iQ(6a)p"(x). (2.72b)
As da is not a function of position §(9,¢) = iQ(da)d,¢. Demanding gauge

invariance of the Lagrange density £(¢, ¢*,0,¢,0,¢*) and using (2.41) one
obtains for arbitrary da:

Y oc oL . oc X
6L = a—(b&b + W&(@M) + aTs*‘M’ + Wzs(am ) (2.73a)
oc | . oc .
. Y . o 1

Hence, there is a continuity equation for the four-current j# = (p, j) of charge

Q= [dxp:

auj“:§p+ﬁ-j:0, (2.74)
with ac ac
H= _3 — *
Jh=-iQ (8@@0# a(aﬂgs*)‘b) : (2.75)

Hence, in a closed system, charge @) is conserved (% =0). Global U(1) gauge
symmetries lead to conserved quantum numbers (in this case, charge Q).

If « is a function of space, i.e. « = a(x), (2.70) is a local gauge transforma-
tion, i.e. one demands that the expectation values (2.69) are invariant against
a local choice of phase factors, cf. Fig. 2.14. A local, position dependent phase
transformation

¢(z) — ¢'(z) = exp (IQa(x)) ¢(2) (2.76)
yields
Opp(x) = 0ud' (z) = exp(iQa(2)) [0u(z) +iQ(Tpa(x))(x)] ,  (2.77)

which is not forminvariant. The Lagrange density can be made covariant by
substituting the partial derivative by a gauge invariant derivative:

Oy — D, =0, +1eQA,(x), (2.78)

where ¢ = eQ is the electric charge of the field ¢ (z) (e: electric charge, Q:
quantum number), and A,, is the four-potential (2.45) which transforms under
phase rotations as

Au(z) — A () = Ay(z) %aﬂa(x) . (2.79)
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With this gauge transformation one obtains:

D,é(x) = 9, +ieQA, — D', ¢/ (z) (2.80a)
= (O +1eQA),(2)) exp(iQa(x))¢ (2.80b)
= exp(iQa(x)) [0, + 1Q0,a(x) +ieQA,(x) (2.80c)
—1Qo ()] (2.80d)
= exp(iQa(x)) [0, +1Qed, Ay ()] d(x) (2.80e)
= exp(iQu(x)) D, ¢(z) . (2.80f)

Hence, the invariance of ¢* D,, ¢ under U (1) phase transformations is achieved
by introducing an interaction for the field ¢, cf. Fig. 2.14.

The coupling of the matter field ¢ and the gauge interaction field A, (z) is
uniquely determined by demanding local gauge invariance, i.e. by introducing
the gauge invariant derivation

D,¢(z) = 0,¢(x) +1eQALxd(x) , (2.81)

also called minimal gauge invariant coupling. With the above derivations using
U(1) gauge invariance, one obtains for the Lagrangian density of QED, which

v Y

¢

D

(a) (b)

Fig. 2.14. Illustration of a global gauge symmetry vs. local gauge symmetry with
plane waves propagating in x direction. In (a) a global gauge transformation changes
the phase of the plane wave at every position (x,y) by the same amount A¢. Thus,
the plane wave fronts move to the dotted lines and there is on average no effect
on the shape of the wave propagation. In (b) a local phase transformation changes
the wave fronts differently at different locations (z,y), i.e. Ap = A¢p(z,y). The
transformed wave is no plane wave any more. This change of shape is explained by
the introduction of external interactions
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describes the interaction of photons (the electromagnetic interaction field)
with fermions:

LQED = E;:ifrn’on + Eg;z:on + Linteraction (2823)
4
1 = ; .
= _ZFWFW + ¢(1hz v —me)y —ejh A, (2.82Db)
i=0
4
L 124 3 9 7y it A
=~ FwF" + Yihy A Ourp — mapp — ej" Ay (2.82¢)
i=0
= ‘C];‘ie?mion + ‘C];Z})ton + ?Zif’rszion + Linteraction =T =V . (282(1)

For a detailed discussion of non-Abelian SU(2) and SU(3) gauge symmetries
within the U(1) x SU(2) x SU(3) gauge symmetry of the standard model
— usually discussed in the language of differential geometry (local sections
of principal fiber bundles) — the interested reader is referred to specialized
literature, see Sect. 2.5.5.

The standard model is one of the best tested theories in physics. However,
it too, can only be an approximation of a more general theory, due to several
problems such as:

e There are more than 30 free parameters (e.g. particle masses and constants
of nature) that have to be determined by measurements.

e Why does dark matter exist and why is there more normal matter than
antimatter in the known universe?

e The gravitational force is completely excluded.

We end this section with an appropriate quote by Sheldon L. Glashow (No-
bel prize 1979), who writes in “The Charm of Physics” about the motivation
to do fundamental physics [148]:

“ “Do we do fundamental physics to explain the world about us?” is
a question that is often asked. The answer is NO! The world about us
was explained 50 years ago or so. Since then, we have understood why
the sky is blue and why copper is red. That’s elementary quantum
mechanics. It’s too late to explain how the work-a-day world works.
It’s been done. The leftovers are things like neutrinos, muons, and
K-mesons — things that have been known for half a century, still have
no practical application, and probably never will [...] So it is that we
are not trying to invent a new toothpaste. What we are trying to do
is to understand the birth, evolution, and fate of our universe. We are
trying to know why things must be exactly the way they are. We are
trying to expose the ultimate simplicity of nature. For it is in the na-
ture of elementary-particle physicists (and some others) to have faith
in simplicity, to believe against all reason that the fundamental laws
of physics, of nature or of reality are in fact quite simple and compre-
hensible. So far, this faith has been extraordinarily productive: Those
who have it often succeed; those without it, always fail.” (Sheldon
L. Glashow, 1991, p. 109)
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2.5.5 Suggested Reading

For a recent description of latest accelerator experiments at DESY, PETRA
and HERA, see e.g. [156]. Elementary introductions into the standard model
can be found in Close [157], Halzen and Martin [158], or Nachtmann et
al. [159]. Standard references to relativistic quantum theory and gauge the-
ories are Aitchison and Hey [160], Sakurai [161], or Mandl and Shaw [162].
A classic is Bjorken and Drell [163, 164] which is very succinct and quickly
advances from chapter to chapter. An excellent book covering the history of
elementary particle physics from the 1960s to 1970s is edited by Hoddeson
et al. [95]. A very paedagogical introduction to ideas of elementary particle
physics is achieved in the classic by Dodd [165]. Some good popular books on
elementary particle physics and the principles of field theory are Okun [166]
and Fritsch [167]. Lattice Gauge Theory, which was developed in a ground
breaking work by M. Creutz [168], in order to be able to perform Monte
Carlo simulations of the basic equations of quantum chromodynamics on a
lattice, is discussed in Montvay and Minster [169].

2.6 Computer Science, Algorithms, Computability
and Turing Machines

Computer science provides a multitude of concepts, methods of description,
models, algorithms, or simply ideas which serve to the general purpose of
visualizing, organizing and analyzing complex phenomena of reality. In prin-
ciple, the modeling strategies are basically the same as in the natural sciences.
From identifying the most important contents of a real system one derives an
abstract model (abstraction). The model might be a formula, an equation, an
algorithm, an automata, a graph, etc., cf. Fig. 2.15.

Creating a model of the real complex system allows for saving the model
in binary form on a computer with subsequent simulation and analysis based
on some algorithm. From the input/output properties of the model system
one can make predictions for the behavior of the real system (interpretation).
The most important point in this process is the identification of the essential
features that characterize the real system in a unique way. Oversimplification
is a common weakness of this modeling process.

Computer science is dominated by algorithms. What is an algorithm?

An intuitive notion of an algorithm is a step-by-step procedure (a finite
set of well-defined instructions) for accomplishing some task which, given an
initial state, will terminate in a defined end-state, cf. Fig. 2.16.

An algorithm allows for “mechanically” accomplishing some task by fol-
lowing the step-by-step instructions, even without any intellectual insight into
the procedure or the problem to be solved. The computational complexity and
efficient implementation of algorithms are very important in scientific com-
puting, and this usually depends on suitable data structures. Algorithms have
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extraneous causes .
input

\ l / interpretation |
41______

—

/ \ abstraction ]
] output

implications

model system

Fig. 2.15. Modeling of a real complex structure in computer science. In computer
simulations, one utilizes numerical models. These models can come in many shapes,
sizes, and styles. It is important to emphasize that such a model is not the real world
but merely a human construct to help one better understand real world systems.
In general, all models have an information input, an information processor, and an
output of expected results. In an abstraction process the respective model system is
extracted from the essential parts of the real system. From the interpretation of the
input/output behavior of the model system one draws conclusions on the behavior
of the real system

to be written down in a way, such that each step is comprehensible. Hence,
the single basic steps have to be a subset of an agreed upon set of elementary
operations. Algorithms that are implemented on computers are formulated in
suitable computer languages and are subsequently translated (compiled) into
a machine code which actually consists only of elementary single steps. An
algorithm can be written down in several ways, e.g. as written text with step-
by-step directions as in Algorithm 2.1, as pseudo-code revealing the elements
of a computer language that have to be used when implementing the algo-
rithm, cf. Algorithm 2.2, or as explicit code sample in a computer language,
cf. Algorithm 2.3.

We start out with some examples of algorithms, some of which have been
known for a long time. The sieve of Eratosthenes (see e.g. [170]) is one of the

Algorithm

initial state end state

Fig. 2.16. An algorithm is a set of instructions which — applied to an initial state
— develops the system into a defined end-state
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Algorithm 2.1 The sieve of Eratosthenes
This is one of the oldest known algorithms which is used for finding all prime numbers
up to a specified integer:

1. Write a list (called A) of numbers from 2 to the largest number you want to test
for primality.

2. Write the number 2, the first prime number, in another list for primes found.
Call this list B.

3. Strike off 2 and all multiples of 2 from list A.

4. The first remaining number in the list is a prime number. Write this number
into list B.

5. Strike off this number and all multiples of this number from list A. The crossing-
off of multiples can be started at the square of the number, as lower multiples
have already been crossed out in previous steps.

6. Repeat steps 4 through 6 until no more numbers are left in list A.

oldest known algorithms. It it used for determining all prime numbers up to
some specified integer.

Ezample 5 (Application of Algorithm 2.1). We want to apply this algorithm
to the first 17 integers.

Steps 1 and 2:
list A ={2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16, 17}, list B = {2}.
Step 3:
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 17.
Thus A = {3,5,7,9,11,13,15,17}.
Step 4:
B =1{2,3}.
Step 5:
A=1{3,5,7,9,11,13,15,17} = {5,7,11,13,17}.
Step 6:
Repeating Steps 4 to 6 finally yields: B = {2,3,5,7,11,13,17}.

A different example of a well-known algorithm is Euclid’s algorithm which
determines the largest common divisor of two natural numbers a and b, see
the pseudocode in Algorithm 2.2.

After input of the numbers a and b it is tested whether b = 0. If this is
not true then a is set to the value of b and the new value of b is the rest of

Algorithm 2.2 The largest common divisor (Euclid’s algorithm)

Read the natural numbers a and b
while b is not 0 do

Substitute (a,b) by (b, a MOD b)
end return a
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Algorithm 2.3 Rest-recursive function call

long Faculty(long n, long y)

{

if (n < 0) return (0);

if (n == 0) return (1);

if (n == 1) return (y);

return ( Faculty(n-1, y * (n-1)) );
}

the division of (the previous) a value by b. This is repeated until the rest of
the division is 0. Then the searched for result is a.

Sometimes an algorithm which is derived directly from a mathematical
definition or a formula is not necessarily the most efficient one. An example
of this fact is provided on p. 82 in Example 6.

2.6.1 Recursion

An important principle in computer science for the description of algorithms,
functions, or data structures is recursion. The basic principle of recursion is
that a function calls itself. Recursion is also one of the most important tools
for the implementation of efficient search- and sort-algorithms which are also
abundant in computational materials science, usually in the form of look-up
tables for the determination of interacting particles or finite elements of a sys-
tem. Almost all search algorithms need a direct access to all elements that are
to be sorted. When using a list, there is no such immediate access; thus one
uses an index table which contains references to consecutive elements. Gen-
erally speaking, search algorithms are based on the strategy that they do not
compare all elements of a data set S but only certain elements s; € .S which
distinguish this data set from other data sets in a unique way. These specific
elements are called “keys”. Thus, in a search, only the keys are important.

Exercise 3 (Write a recursive version of Euclid’s algorithm. The
function may not contain any “FOR”, “GOTO” or “WHILE”
construct).

Solution 2. We use the key word “PROCEDURE” for calling a subroutine
named “Euclid” which in turn calls itself in the following pseudo-code:

PROCEDURE Euclid(int a, b)
if b=0 then return a;

else return Euclid (b, a mod b)
END

The concept of recursive functions was introduced by John McCarthy, the
inventor of the programming language “LISP” [171]. The first step in writing
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a recursive function is a specification of its input/output behavior. When
writing the function in the next step one usually uses an if-statement to catch
the beginning of the recursion.

Exercise 4 (Write a recursive function that calculates the faculty
nl).

Solution 3. We use the fact that n! =n x (n —1)!, i.e. the main problem is
successively reduced to ever smaller problems until the trivial case (0! = 1)
occurs. In the language C'++ or C this reads

long Faculty(long n)

{
if (n < 0) return (0);
if (n == 0) return (1);
return ( n * Faculty(n-1) );
}

In Exercise 3, the recursive mathematical formula is identical with the
implementation (besides syntactic details). The first if-statement makes sure,
that recursion is only called with positive numbers. One great disadvantage
of recursive functions is the additional overhead in terms of computation time
as with each recursive call the function’s return address has to be saved and
memory for all local parameters has to be provided for. This disadvantage
can be avoided by using rest-recursive functions, in particular if the used
compiler supports “last-call optimization”. A rest-recursive function call is
implemented in C' or C++ as displayed in Algorithm 2.3.

This function is illustrated in Fig. 2.17. In Fig. 2.17a the usual recursive
function calls are displayed. This function provides at each call the case (n—1)
and multiplies it with n. After recursion to the lowest point the function goes
upwards again and provides each respective result to the calling function.
Thus, in each recursive step both, the arguments and the respective result are
important. In Fig. 2.17b the rest-recursive function call is shown.

Here, at each call, the value of n is passed but also the current state of the
faculty calculation. Thus, in each recursive step the calculation proceeds by
one step until it is finished at the lowest step. Then the final result is simply
returned successively to the calling functions. The passed parameters are not
needed any more and there is no need to save a return address of the calling
function, as the final result can be passed directly to the very first calling
function.

2.6.2 Divide-and-Conquer

Divide-and-Conquer is a recursive programming technique which can be ap-
plied to some problems, provided that they have a suitable structure. If a
problem of size n is to be solved, then this problem is split into two (or more)
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Fig. 2.17. Illustration of a recursive function call (a) according to Example 2 vs. a
rest-recursive function call (b) according to Algorithm 2.3

sub-problems of size n/2 which can then be solved by using the same recursive
algorithm. The two solutions can then be merged to a solution for the original
problem. Examples for applications of this strategy for problem solving can
be found in some common search algorithms, such as merge-sort, bubble-sort,
quick-sort or binary search. It can be shown that these algorithms require an
effort which is no better than O(nlogn) in the worst case. With quick-sort
in particular, this is only true on average. In single cases the effort can be
O(n?). For an introduction of the O-notation see Sect. 2.6.6.

Ezample 6 (An algorithm for the power of a number a).

If a power such as a™ is to be calculated for a larger number n, it is
advisable, not to multiply a n times with a. It is way better to use the following
recursion:

1 : ifn=0,
a" = (a™?)? . ifn > 0and n even , (2.83)
ax (@™ D/2)2 . ifp < 0and n uneven .

Equation (2.83) is provided as pseudo-code in Algorithm 2.4.

The construct “even(n)” in Algorithm 2.4 tests whether the value of n is
even and “squared(n)” calculates the square of n. With each recursive function
call the number n is halved; thus when calculating the n-th power one needs
at the most log, n function calls.

Dynamic Programming

When using recursive function calls, one usually applies a “top-down” princi-
ple. A system of size n is split into tasks of smaller size, e.g. (n —1), (n—2) or
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Algorithm 2.4 Recursive calculation of a power

PROCEDURE Power (a,n)
If n = 0 then return 1
else if even(n) then return squared(a,n DIV 2)
else return a * squared( Power(a,(n-1) DIV 2)) END
END

n/2 and the corresponding function is called recursively. These subsequent re-
cursive calls are usually independent of each other; thus, it might happen, that
the same recursive call is done several times within the recursive structure.

In recursion of fg(5) in (2.84) the value of f(5) is calculated once, f(4)
two times, f(3) three times, f(2) five times and f(0) three times as depicted
in Fig. 2.18.

This means that the recursion of fg(n) leads to an exponential effort.
In this case it is more efficient to store calculated values and reuse them if
needed again. This principle of working with a table in which calculated values
are stored for later reuse is called dynamic programming. The table is filled
“bottom-up”, i.e. in the order ¢ =0,1,2,...,n.

Ezample 7 (The Fibonacci sequence). A standard example for recursion is the
calculation of the Fibonacci numbers

f(n) = f(n=1)+f(n-2), f(0)=0. (2.84)

A pseudo-code for a corresponding recursive algorithm is shown in Algo-
rithm 2.5.

Ezample 8 (Pairwise alignment in biological sequence analysis). An important
example for the use of dynamic programming techniques is the editing distance

f(5)
f(4) f(3)
f(3) f(2) f(2) f(Q1)

A\ 2\ \
f @ @ £(0) f(1) f(0)
A\
f £

Fig. 2.18. Exponential effort for a recursive calculation of fz(5)
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Algorithm 2.5 Recursive calculation of the Fibonacci numbers

PROCEDURE f_B(mn) if n = 0 then return O
else if n = 1 then return 1
else return f(n-1) + f(n-2) END
END

between two words (a1as...a;) and (b1bs...b;) which is defined as the minimum
number of elementary editing actions (“delete”,”insert”,”substitute”) neces-
sary to transform the first word into the second one. For example, the words
“ANANAS” and “BANANA”. Here, the editing distance is two, because:

ANANAS — BANANAS (insert),
BANANAS — BANANA (delete).

The editing distance between words is of great importance in genome re-
search when comparing alignments of sequences (or parts of them) and then
deciding whether the alignment is more likely to have occurred because the
sequences are related, or just by chance. Box 2.5 shows the sequence align-
ments to a fragment of human a-globin and S-globin protein sequence (taken
from the SWISS-PROT database identifier HBA_HUMAN?2. The central line
in the alignment indicates identical positions with letters, and “similar” posi-
tions with a plus sign.

In comparing DNA or protein sequences one is looking for evidence that
they have diverged from a common ancestor by a process of mutation and se-
lection. The basic mutational processes that are considered are substitutions,
which change residues in a sequence, and insertions and deletions, which add
or remove residues. Insertions and deletions are together referred to as gaps.
Natural selection has an effect on this process by screening the mutations, so
that some sorts of change may be seen more than others. The editing distance
of sequences can be used to evaluate a scoring for the pairwise sequence align-
ment. The total score that is assigned to an alignment will be a sum of terms
for each aligned pair of residues, plus terms for each gap. In a probabilistic
interpretation, this will correspond to the logarithm of the relative likelihood
that the sequences are related, compared to being unrelated, cf. [172]. Pair-
wise alignment constitutes an important application in computational genome
research.

Box 2.5 Sequence alignment to a fraction of human «a- and S-globin

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL
G+ +VK+HGKKV  A+++++AH+D++ +++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

33 www.expasy.ch /sprot
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Greedy Algorithms

With dynamic programming, a table containing all hitherto found optimal
solutions is used and updated in each step. Greedy algorithms do not make
use of such a table; rather, the decision about the next solution component
is based solely upon the locally available information. The possible next steps
for the solution of a problem are compared with an evaluation function. This
is to say that a decision for the next solution step among the available alter-
natives is based on maximizing (or minimizing) some figure of merit which
in turn is based on comparing the locally available next steps. There is no
global criterion as there is no list containing the history of solution steps. This
explains the naming of the algorithm: At each step one simply continues into
the direction which — from a local perspective — is the most promising one. In
many cases, the greedy strategy results in an acceptable, albeit not optimal
solution. Thus, this kind of algorithm (also called Greedy-heuristics) is mostly
used for problems, where no other comparably efficient algorithms are known.
A typical application would be the traveling salesman problem, (see Example
9), or the reverse Monte Carlo optimization scheme discussed in Sect. 7.2.1
on p. 336.

2.6.3 Local Search

In the previously discussed algorithms the problem solving strategy has always
been a partition of the total problem of size n = (a1, aq,...,a,) into sub-
problems ¢ = (a1, a2,...,a;) (i < n) of smaller size. A different strategy is
adopted with algorithms that use a local search strategy. Here, one starts
with solutions of the complete problem of size n and modifies these by small
manipulations (in genomics they are called “mutations”), e.g. by modifying
only one component of the solution:

(CLl, a2, ...;A5—-1,05,Aj41, ...,an) — (CLl, A2y ..uy aj,l,a’j, Aj41, ...,an) . (285)

This strategy is based on searching for a new solution within the neighbor-
hood of the previous one. The new solution should have improved properties
compared with the old one. What “neighborhood” means depends on the con-
text of the problem; e.g. in physics this might simply be some neighborhood
of a system at a point in I phase space, cf. Chap. 6. Mutations are usually
chosen randomly.

Ezample 9 (Traveling Salesman Problem). Consider a set of n points in R2.
Which one is the graph which yields the shortest connection of all points in
Fig. 2.19?

As a first attempt one might guess one complete solution, i.e. an arbi-
trary connection of all points. This temporary solution is then subsequently
improved by identifying crossing connection lines (edges) and removing them
by local mutations, cf. Fig. 2.19.

The initial configuration can be generated either at random or by a simple
Greedy-heuristic.
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Fig. 2.19. The traveling salesman problem solved by a local search strategy for
n=11

A principle problem with this strategy is, that there is no guarantee to
find the optimal solution by lining up local improvements, demanding that
each single mutation improves some figure of merit (in this case: minimizes
the traveled distance).

The improvements are done as long as there are no local moves left which
could further improve the current solution. This problem is typical for molec-
ular dynamics simulations, e.g. in a micro-canonical ensemble (i.e. one, that
keeps the total energy of the system constant). Under some unfavorable cir-
cumstances it might occur that the system is “trapped” in a local energy
minimum; thus the “true” equilibrium state, i.e. the global minimum energy
state is not attained by the system. This is illustrated in Fig. 2.20.

Solutions

Sequence
of mutations

Local ____7
minimum Global

minimum

|
Quality of solutions

Fig. 2.20. Ilustration of the local search principle. The sequence of mutations
always improves some figure of merit in each single step. In physical applications,
the quality of successive solutions might be determined by minimizing the total
energy of the system. Thus, the system can be “trapped” in a local minimum state
of energy which however is not the searched (optimal) global minimum (depicted in

grey)
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Sometimes it is better to allow for temporary local deterioration on the
path to the optimal global solution. Such a strategy is described in the next
section and is one of the most widely used principles in computational physics.
Yet another strategy is to start the local search process many times with
random initial configurations.

2.6.4 Simulated Annealing and Stochastic Algorithms

A method to overcome the discussed fundamental problem of local search in
Sect. 2.6.3 is the use of random numbers. The use of random numbers in al-
gorithms is a sometimes surprisingly efficient method for solving problems.
Algorithms that make use of random numbers are generally termed stochastic
algorithms. In contrast to this, algorithms which do not use random num-
bers and which — at all times — have only one possible next step, are called
deterministic algorithms. Many stochastic algorithms are used in the field of
algebra and number theory. In the natural sciences, so-called Monte-Carlo
algorithms which contain a random element for the acceptance of new system
states are very common and are often used in materials science, solid state
physics and thermodynamics, cf. our discussion in Chap. 6. A very simple
form of a stochastic algorithm would be to randomly shuffle some numbers
in a list which are subsequently used as input for the quick-sort algorithm.
By statistically permuting the list of numbers which is to be sorted by quick-
sort results in an efficiency of O(nlogn) for every function call (instead of an
average efficiency of O(nlogn)).

A mutation of a system (in physics also called “trial move” or simply
“trial”) is accepted with a certain probability despite its worse quality in
comparison with the solution in the original state. The probability of accepting
a worse solution depends on two parameters A and T where A is the difference
of the quality of the old vs. the new solution, that is, if the new solution is
much worse than the previous one, then the acceptance probability P(A,t) is
accordingly small. The second parameter T is called temperature. Initially, one
starts at a high temperature 7' which then gradually decreases and approaches
zero. That is, at the beginning, very large deteriorations of the solutions are
still accepted with a certain probability P which decreases during the solution
process. In the end, the procedure acts as a local search which accepts only
quality improvements as a new system state. For the probability of acceptance
the function in (2.86) is used.

1 : new solution is better than the previous one ,
P(A,T) = {exp (=A/T) : else,
(2.86)
Algorithm 2.6 provides a generic pseudocode scheme of the Metropolis
algorithm, respectively simulated annealing.
The strategy of using a time-dependent (i.e. dependent of the number
of mutations) acceptance probability is similar to many physical processes.
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Algorithm 2.6 Simulated annealing, Metropolis Algorithm (Version I)

Function K is some cost function which has to be minimized.
tFinal and k are some constants.

rnd is a uniformly distributed random

number in the interval [0,1].

Set t initial temperature
Set a initial solution
while ( t > tFinal ) DO
for i:= 1 TO k DO
Choose a mutation b from a at random
if K(b) < K(a) then a:= b END
else if rnd <= exp[-(K(b)-K(a)] THEN a:= b END
END
t:= t *x 0.9
END OUTPUT a

One starts at a high temperature and then slowly cools down the system
which gradually approaches an equilibrium — e.g. crystalline — state. This
crystalline state corresponds to an optimal solution of the system and explains
the terminology “simulated annealing” for this simulation strategy.

2.6.5 Computability, Decidability and Turing Machines

Computability is a branch of computer science that deals with principal ques-
tions such as:

How can one formalize the concept of “algorithm”?

What is a computable function (an algorithmically solvable problem)?
Are there any non-computable functions?

Are there any problems that are well-posed but which are not computable
by any algorithm?

An intuitive notion of an algorithm, respectively “computability” contains
the following elements [173]:

A finite description,
Unique rules for solving a problem, i.e. in every situation the next step is
uniquely defined,

e A clear definition of input/output behavior of the algorithm,

e A solution after a finite number of steps.

Any description of an algorithm — generally done with some computer lan-
guage — uses a finite alphabet; thus, there is only a finite number
of descriptions of algorithms. On the other hand, there is an uncountable
number of functions f : N — N. Hence, the following question arises: For
how many of this uncountable number of functions does no algorithm exist,
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i.e. which of these functions are not computable? Based on the above intuitive
notion of an algorithm this question cannot be answered.

Automata

In order to find answers to the questions raised above, the notion of an algo-
rithm as a dynamic process that leads from from state to state, was formalized
in terms of deterministic finite automata (DFAs) which can be represented as
directed graphs. Graph theory itself is a powerful modeling tool — abundant
in computer science — for the visualization of relations between objects. Each
knot of a graph represents a certain state which can be assumed by the con-
sidered automata. The knots are connected by edges which are labeled with a
symbol from some working alphabet, i.e. the set of symbols that can be read
by the automata. By reading a symbol the automata goes from one state to
a different one. Any finite, non-empty set can be considered to be a working
alphabet. The elements of an alphabet are then called characters, letters or
symbols. The sets X = {a,b,¢,d,e, f,g,h}, X = {0,2} or ¥ = {condition,
procedure, if, then, else, begin, end, while,...} are examples of alphabets. A
“word” is a combination of elements of an alphabet. For example bbiaaaacf
is a word on the alphabet X'. The length || of a word, e.g. |bbiaaaacf| =9 is
the number of symbols which are included in a word. The set of all words on
an alphabet X' is denoted as X*.

Ezample 10. Let the alphabet X = {a,b}. An example for a DFA would be
the graph in Fig. 2.21.

This automata has the four states zg, 21, 22, z3. The start state is indicated by
the arrow to the first state zo. The end state(s) are denoted by a double circle

a
Z
C?/' b
allp bl|a
D)
a

Fig. 2.21. Illustration of a deterministic finite automata as a directed graph
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(in this case only z3). An automata such as in the above example processes a
“word” w by consecutively reading the symbols one at a time and performing
the corresponding changes of state. If the state after processing the whole word
is the end state, then the word is said to be “accepted”. For example, the above
automata accepts the word bbbaa going through states zg, 23, 22, 21, 22, 23 but
not e.g. aab. The set of all accepted words is called the accepted language and
is denoted as T'(M), i.e.:

T(M) = {w € A* | the automata M accepts the word w} . (2.87)

For an introduction into the notation of sets such as in (2.87) the reader is
referred to Chap. 3.

DFAs are models for simple “computers”. They are equipped with a mem-
ory in the sense that each respective state of the automata is a piece of finite in-
formation. A consequence of this is that some languages such as {a™b™ | n > 0}
cannot be processed. One step to reduce this restriction of automata is the use
of a memory which is not restricted by the number of states. Such automata
are called cellar automata.

Cellar automata have no principal limitation in the number of states they
can assume. They are equipped with a stack structure (also called “LIFO”
structure — “last in first out”) as memory access. This means that the piece of
information that has been stored last will be accessed first in reading mode,
cf. Fig. 2.22. A LIFO structure is an example of an abstract data type (see
Problem 5), which is abundant in computer science and which is often used
for book-keeping of interactions between particles or finite elements in imple-
mentations of simulation programs for fluids or solids.

If the cellar memory is empty, there may be no memory access in read
mode. This is indicated by the sign “#” at the bottom of the memory. This

read head input tape

A

processing unit

cellar memory

g2

Fig. 2.22. Illustration of a cellar automata
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is the lowest sign in the cellar memory and when this is read it indicates that
the memory (apart from “#” itself) is empty. One step of a calculation with
a cellar automata can be described as follows: The automata reads a sign
from the input tape. Depending on the current state of the automata and
of the sign read, the uppermost sign in the cellar memory is substituted by
a sequence of cellar symbols which also may be empty. Similar to DFAs, a
graphical representation of the change of states is used for cellar automata,
cf. Fig 2.23. The edge in this case reads: If the cellar automata is in state
z and the current input character is a with A being the top character, then
the automata switches to state 2z’ in the next step and substitutes A with
By B;...By.

In a mathematical notation one can describe the transition of a cellar
machine from state z to state 2z’ with a function 4:

d(z,a,A) = (', B1B2...By,) . (2.88)

Cellar automata can express a larger set of languages than simple DFAs,
e.g. the language S = {a™b™ | n > 0} which is not accepted by any finite
automata, can be accepted by a cellar automata.

Ezample 11 (Draw the language a™b™ accepted by a cellar automata in graph-
ical representation). The solution is depicted in Fig. 2.24b.

The cellar automata in Example 11 works deterministic. Each read a (ex-
cept the first one) is written as A into the cellar memory. At any one time
when b’s are read, an A is removed from memory. As soon as no input charac-
ters are left on the tape, the cellar memory is empty, i.e. the lowest character
“#” in the cellar memory is recognized.

@ a,A/B1B>...By, @

a) By
B>

b) |A Bk
C C

Fig. 2.23. Graphical representation of the change of states in a cellar automata. In
(a) the notation for a transition from state z to state 2’ is depicted with A being the
top character in the cellar memory and the sequence Bi, Ba,...Bj being the next
characters to be read by the automata. In (b) the states of the cellar memory before
and after reading the sequence of characters are depicted
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a, # | #

b,A/e

b)

Fig. 2.24. The language S = {a"b"} which is accepted by a cellar automata. In
(a) the notation for an infinite DFA is shown and in (b) the graphical representation
of a cellar automata accepting S is displayed

A cellar automata can only write or read at the end of the cellar memory.
The next logical step in the formalization of the notion of a computer removes
the restriction of the LIFO structure of cellar automata, i.e one introduces
automata with a random access memory on all memory cells. Hence, the
cellar memory is substituted by a sequential memory in the form of a memory
tape which can be read or labeled by a read/write head. There is no additional
“computing power” when making a distinction between a working-tape and
an input-tape. Thus, input is read from one tape and results are written on
the same tape by use of a finite read/write head which can move freely and
stepwise in both directions along the tape, cf. Fig. 2.25. The tape can only
be altered at the current position of the read/write head. Such a generalized
model of an automata is called a Turing machine.

Turing Machines

The Turing machine is a fundamental concept for a simplest, memory-based
computability model. Computation in this model means stepwise modification
of the memory content. This can be represented by a transition function 4,
e.g.
5(z,a) = 6(2',b,x) . (2.89)
In this case, the Turing machine in state z reads a character a and then
assumes state z’ substituting a by b where a and b are characters of the
working alphabet. After reading of a character, the Turing machines moves
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read/write head

«—4%— input/working tape

h 4
finite
processing unit

Fig. 2.25. A Turing machine with read/write head that moves freely and stepwise
along a working/input tape

the read/write head by one step which is denoted by € M = {L, R, N}. The
letters mean “left” (L), “right” (R) and “neutral” (V) (no step at all).
A mathematically precise definition of a Turning machine is the following

Definition 1 (Turing Machine). A Turing machine (TM) is a 7-tuple
M= (Z,X,T,6,20,0,F) , where

Z is the finite set of machine states,

2 is the input alphabet,

I' D X is the working alphabet,

0:ZxI — ZxI'x{L,R, N} is the transition function in the deterministic
case,

§:ZxI — P(ZxTI x{L,R,N})is the transition function in the
non-deterministic case,

Zo € Z 1is the initial state,

O e I' — X s the blank,

E D Z is the set of final states.

Remark 1. The Turing machine introduces a fundamental notion of a simplest
memory-oriented computing model. Computation in this model means step-
wise altering the contents of memory cells. The memory of a Turing machine
consists of single cells which may each contain one letter of a finite alphabet.
The memory cells may be addressed by moving the write/read head stepwise
from cell to cell.

In the year 1936 Turing proposed the following formal definition of “com-
putability” by means of a Turing machine [174].

Definition 2 (Computability). A function f : X* — X* (e.g. a function
on N) is called computable or Turing computable, if there exists a Turing
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machine TM which can calculate this function f from any input x, i.e. if a
Turing machine reads the binary representation of a natural number x and
stops with f(x) (again, in binary representation) as result on the input/work-
ing tape after a finite number of steps.

In other words, a function f is called “computable” if there exists an
algorithm which is able to compute the value of f for any input as argument
within a finite number of steps.

Remark 2. Turing’s definition marks the end of a development of notions of
computability in an attempt to derive a general algorithm (or method) which
allows for proving or disproving all mathematical theorems by using solely
the underlying axioms of the system. This attempt of deriving a complete ax-
iomatic basis of all mathematics along with a proof of its consistency (Hilbert’s
Program) was started by Hilbert in 1900 in a famous lecture [175]. In 1923
Skolem [176] considered as a basis for computability the so-called primitive
recursive functions which are defined inductively. First, one declares a set of
functions axiomatically as primitive recursive, i.e. they are computable. For
the rest of the definition one provides rules as to how to obtain new — per defi-
nition — computable functions from already known computable functions. One
rule is insertion, i.e. if f and g are computable then also f(g(x)) is computable.
Another rule is iteration, also called called primitive recursion, i.e. if f(z) is
a computable function then also h(n,z) = f(f(...f(x)...)) is computable.
——
n—times

In 1931 Kurt Gédel (1906-1978) introduced the primitive recursive function
in his work [177] and proved that any sufficiently complex algebraic system is
either incomplete or contradictory, i.e. he could prove that Hilbert’s idea of a
complete axiomatic basis of all mathematics was doomed. Several other pro-
posals for the definition of computability were published, e.g. S.C. Kleene [178]
and A. Church [179] in 1936 proposed a definition of computability based on
the so-called A-definable functions. They also showed in the same publica-
tions that this definition of computability is equivalent with the one based on
primitive recursive functions [178]. In 1937 it was shown that the A-definition
of computability is also equivalent with Turing’s definition [174, 180]. Godel
and Turing in essence showed that not all questions that can be asked within
an axiomatic system in mathematics, in computer science or in general in
some logical system are decidable within the bounds of the system. There are
problems in mathematics, e.g. the diophantic equations®® [181, 182], which
are unsolvable within the underlying available system of axioms.

It turned out, that all proposed definitions of “computability” are equiva-
lent to each other. Particularly, there has never been found a computational

34 Diophantic equations are polynomial equations with integer coefficients for which
an integer solution is sought. This problem is also known as Hilbert’s 10th problem
which was raised by him in the year 1900 [175]. It was not before 1970, when
Hilbert’s 10th problem could be proved to be unsolvable by Yuri Matiyasevic.
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model which could not — in principle — be represented by a Turing machine.
This general observation is also true for the so-called Quantum computers
or DNA-computers. Based on this observation A. Church in 1936 made the
following proposition [180]:

Proposition 1 (Church’s thesis). The notion of computability is ade-
quately defined by the model of a Turing machine.

Remark 3. Note that this is a proposition, that has been generally accepted,
i.e. it cannot be proved. The term “Church’s” or “Church-Turing” thesis seems
to have been first introduced by Kleene who provides a good survey in Chaps.
12 and 13 of [183].

In summary, every effectively calculable function that has been investi-
gated has turned out to be computable by a Turing machine. All known
methods or operations for obtaining new effectively calculable functions from
given effectively calculable functions are paralleled by methods for construct-
ing new Turing machines from given Turing machines. All attempts to provide
an exact analysis of the intuitive notion of an effectively calculable function,
i.e. of the notion of computability, have turned out to be equivalent in the
sense that each analysis offered has been proved to pick out the same class of
functions, namely those that are computable by a Turing machine. Because
of the diversity of the various analyses with this respect, Church’s thesis is
generally accepted.

Definition 3 (Decidability). A set A C X* of a Turing machine (i.e, an
accepted language T(M) C X*), is called decidable if the characteristic func-
tion x7 : X* — {0,1} of T can be computed. For all w € X*

XT(w):{(l) Z;g (2.90)

Remark 4. For a definition of T'(M) see (2.87) on p. 90.

When it comes to to the question of decidability of formal languages, these
languages are also called “Entscheidungsprobleme”. With such an algorithm,
which is depicted in Fig. 2.26 as a black box, the input is some word over an
alphabet. On the other hand, when computing a function, the input is a subset
of the natural numbers. Numbers, however, can be represented as words of the
alphabet {0,1} in binary form, and vice versa, words can be represented as
numbers. For this, one simply numbers all symbols of the alphabet A, starting
with zero; A word is then interpreted as a number over the number system
with basis |A|. For a Turing machine, a “natural” form of input/output is
given by a binary representation of words over the alphabet {0, 1}.

Ezample 12 (The Halting Problem). Algorithms are written down in the form
of programs, e.g. for a Turing machine. Programs can be written down as



96 2 Multiscale Computational Materials Science

: ={5 1 ugn

Fig. 2.26. Decidability of a formal language. The corresponding algorithm is de-
picted as black box. Such problems are also called “Entscheidungsprobleme”

words of a certain alphabet. In this representation, programs can be used as
input for another algorithm?® In the following, a particular language will be
considered which has the following alphabet:

H = {A] A is a program, which, when used as input of A (2.91)

stops after a finite number of steps.

This particular problem is called Halting problem and it is undecidable.

Proof: Assuming that the Halting problem was decidable, there is an algo-
rithm which can be depicted as black box, cf. Fig. 2.27.

Using this algorithm, one constructs a new algorithm, which stops exactly,
if the black box outputs 0. (The actual output of the algorithm is irrelevant).
In the case of 1 as output, the algorithm never stops, i.e. it enters an infinite
loop.

Let z the new code of this algorithm. The question is whether z stops
or not, i.e. whether z € H ,or Z ¢ H. If z stops after input of z, then
by construction of the algorithm, the black box outputs 0 upon input of z.
However, the black box is the assumed decidability algorithm for the Halting
problem. If the black box outputs 0 after input of z, then this means that
the algorithm does not stop upon input of z. Likewise, assuming that z does
not stop after input of z, then it follows analogusly that z stops after input
of z. Thus, there is a logical contradiction and the Halting problem is not
decidable. |

1, if A stops after input of 4

0, if A does not stop after input of 4

Fig. 2.27. A black box algorithm for the proof of the undecidability of the Halting
problem

35 A simple example for an algorithm that has as input a different algorithm is a
compiler.
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Infinite
Loop

» Stop

Fig. 2.28. Result of the Halting problem. Either the algorithm enters an infinite
loop or it stops, depending on the output

As a result of the Halting problem, one realizes, that there are functions,
which are not computable. The characteristic function of the Halting problem
is one example, cf. Fig. 2.28.

Ezample 13 (A Turing machine for the function f(x) = x 4+ 1). The Turing
machine depicted in Fig. 2.29 calculates the function f(z) = = + 1. If one
starts this machine with a number z (in binary representation), then it stops
after a finite number of steps in a defined end state and the number in the
current state of the working tape is « 4+ 1 (again, in binary representation).
Thus, the function f(z) =z + 1 is a “Turing computable” function.

Ezample 14 (A Turing machine that substitutes all characters). The transition
function § in Fig. 2.29 defines the transition of a Turing machine from one
state to the next. This can also be depicted in a transition table. Let

Fig. 2.29. Graphical representation of a Turing machine that calculates the function
f(x) = z + 1. This machine — without changing the tape content — first moves the
read /write head all the way to the right to the position of the lowest bit. If this bit
is 0 then it is set to 1 and the machine is done. If the bit is a 1 then the bit is set
to 0 and the head moves one step to the left. This procedure is repeated until the
leftmost bit is read and changed accordingly
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Z:{ZOazE}a
Y ={a,b},
I={a,b,0} .

The transition table is a 5-tuple (z;, 25, vi,7v;, M) given in Table 2.7.

A nice Java-program which provides a GUI and which simulates the (bi-
nary) input and output of a Turing machine can be obtained in the world wide
web 36, The machine accepts as input words in binary format and a transition
table such as in Table 2.7 and checks whether the word is accepted.

We have seen previously that when the “computational power” of a com-
putational model such as the Turing machine is restricted too much, then
eventually one reaches a point at which the computational model cannot cal-
culate anymore all possible functions. This is the case, e.g. when a Turing
machine is “degraded” to a DFA.

Something similar happens when one restricts the programming language
of the underlying model too much, e.g. when only allowing FOR-computable
functions but no WHILE-loops. The main difference between a WHILE- and
a FOR- loop is that with the latter the number of loops is set at the begin-
ning, whereas a WHILFE-loop decides dynamically after each loop whether
a stop-criterion has been reached. Thus, a program which only uses FOR-
loops definitely stops after a finite number of steps. The Ackermann function
A(z,y) : N2 — N which is defined for all (z,y) € N by the following recursive
scheme (see [184] and [185]):

A0,y)=y+1, (2.92a)
Az +1,0) = A=, 1), (2.92Db)
Alx+1,y+1) = A(z, A(x + 1,y)) , (2.92¢)

is an example for a function which is only WHILE-computable, but not
FOR-computable, see e.g. [186]. Furthermore, it can be shown that FOR-
computability and primitive recursive computability are equivalent [186].
Thus, A(z,y) is an example of a computable function which is not primi-
tive recursive.

Table 2.7. A transition table for a Turing Machine that substitutes each a with b
and vice versa. The machine stops when a blank is reached

zioovioo Mooz

20 @ b R 20
z0o b a R 20
z O O R Ze

36 http://ais.informatik.uni-freiburg.de/turing-applet /
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2.6.6 Efficiency of Algorithms

While there are some problems which fall into the category of “computable” it
turns out that the associated algorithms are useless for all practical purposes
because they require astronomical computation times. The Ackermann func-
tion (2.92)a~c is just one of many examples which are computable in principle
but which need astronomical computing times, even at small input values.
This function grows larger than is possible by substitution or recursion and
only for small values of the arguments (x < 4 and y < 4) an explicit expres-
sion of A(x,y) can be given. For the original publication of this function by
Ackermann in 1928, which was slightly different from the modern textbook
version given above, see [187]; also compare Problem 6.

The computing time for a problem is measured by the number of elemen-
tary steps (ES) needed by some algorithm until it stops, i.e. until the problem
is solved. Examples for elementary steps are:

Executing one of the elementary operations (+, —, x, DIV, MOD),
Assigning a value, i.e. changing the contents of a memory,
Initializing a loop variable,

Testing an ¢ f-condition.

Ezample 15 (Number of elementary steps of a very simple sort algorithm).
Consider the following piece of pseudocode (2.7) which gets as input an array
a[l,...,n] which is to be sorted.

The kernel of two loops in Algorithm 2.7 consists of one i f-condition (1 ES)
and — in the positive test case — three assignments (3 ES) which switch ali]
with afj]. Each i- and j-loop counts 1 ES. Thus, one can directly write down
the number of ES:

i(u Z (1+4)> :(n—l)—l—nz_: zn: 5 (2.93)

k=1 l=k+1 k=1l=k+1
—1
z(n—1)+5x% (2.94)
=25xn?—15x%x(n—1). (2.95)

Algorithm 2.7 A simple sort algorithm

for i := 1 TO n - 1 DO
for j := 1 TO n DO
if ali]l > al[j] then
h := af[il; alil := aljl; aljl] := h;
END
END

END
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Assuming that one ES on an average computer takes 10~ seconds, one can
sort arrays containing 20000 elements within one second. Often, one is only
interested in how the run time of an algorithm depends on the number of
input elements n, i.e. one only considers the leading term in the computation
time. In the example above one would speak of a “quadratic”, or “order n?
runtime” and writes symbolically O(n?). The meaning of this notation is the
following;:

Definition 4 (O-notation). A function g(n) is of order f(n), i.e. g(n) =
O(f(n)) if there are constants ¢ and ng such that Vn > ng: g(n) <c x f(n).

The symbol “V” is short for “for all” in mathematical notation.

Example 16. The function 2n? + 5n is of order n2, or in symbolic notation:

2n2 4+ 5n = O(n?), as one can choose ¢ = 3. Then 2n? + 5n < 3n? Vn > 5.
Thus, the previous relation is true for e.g. ng = 5.

To classify the efficiency of algorithms we consider in Table 2.8 five different
algorithms A;, Ay, Az, Ay, A5 with corresponding runtimes n,n2 n3,2", nl,
where n is the considered system size, e.g. the number of atoms, particles
or finite elements in some simulation program. These runtimes are typical for
different applications in materials science. We again assume that one elemen-
tary step takes 10~% seconds on a real computer.

It is obvious from Table 2.8 that exponential runtimes (algorithms Ay
and As) are generally not acceptable for all practical purposes. For these
algorithms, even with very small system sizes n one reaches runtimes which
are larger than the estimated age of the universe (10'° years). Algorithm As
could be a solution of the traveling salesman problem (see Sect. 2.6.3). If the
first point out of n has been visited, there are (n — 1) choices for the second
one. This finally results in an exponential runtime of at the least n! steps. A
runtime 2™ as in Ay is typical for problems where the solution space of the
problem consists of a subset of a given set of n objects; There are 2" possible
subsets of this basis set. The “efficient” algorithms A;, As, A3 with runtimes of
at the most n? are the most commonly used ones in computational materials
science.

Usually, in atomistic simulations one assumes the interactions between par-
ticles to be pairwise additive. Hence, the interaction of particles (or atoms)
in a system depends only on the current position of two particles. Some-
times however, three-body interactions have to be included, e.g. when con-
sidering bending and torsion potentials in chain molecules, cf. Sect. 6.3.7.
These potentials depend on the position of at least three different particles.
Solving the Schrédinger equation in ab-initio simulations also leads to a n3-
dependency of the runtime. This is the main reason why ab initio methods
are restricted to very small system sizes (usually not more than 1000 atoms
can be considered). Solving the classical Newtonian equations of motion with

a “brute-force” strategy leads to a n2-efficiency (W) of the algorithm
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Table 2.8. Overview of typical runtimes of algorithms occurring in materials science
applications. Depicted are the number of elementary steps and the corresponding
realtimes for the different algorithms under the assumption that one ES takes 10~°
seconds

Algorithm runtime n =10 n =20 n =50 n = 100

10 ES 10 ES 10 ES 10 ES

A " 108%s  2x107%s 5x10%s 10 7s

100 ES 400 ES 2500 ES 10000 ES

2
Az " 1077s  4x107s 25x10%s 105
) 5 1000 ES 8000 ES  10° ES 10° ES
3 " 10%s  8x10%s 107%s 0.001 s
N . 1024 ES 10° ES 10'° ES 10%° ES
* 107%s 0.001 s 13 days ~10' years
~10°ES ~10® ES ~10%ES 10'°® ES
A5 n'

0.003 s 77 years 10*® years  ~10'! years

that calculates the interactions of particles. This is also generally true in fi-
nite element codes where special care has to be taken when elements start to
penetrate each other. Usually one uses so-called contact-algorithms which use
a simple spring model between penetrating elements. The spring forces try
to separate the penetrating elements again and the core of the contact algo-
rithm is a lookup-table of element knots which is used to decide whether two
elements penetrate each other or not. This algorithm in its plain form has an
efficiency of n2. As an n? efficiency of an algorithm still restricts the system
size to very small systems of a few thousand particles one uses several meth-
ods to speed-up the efficiency of algorithms in computer simulations. Usually,
this is done by using sorted search tables which can then be processed linearly
(and thus reaching an efficiency of ~ nlogn). Hence, when it comes to the
efficiency of algorithms in materials science, one will always try to minimize
the effort to O(n) (with a remaining prefactor that might still be very large).
A discussion of several of the most important speed-up techniques commonly
used in MD simulation codes is provided in Sect. 6.4.1.

Another consideration in Table 2.9 shows why algorithms A;, As and As
may be considered to be efficient. Assuming that the available computer sys-
tems — due to a technology jump — will be 10 or 100 times faster than today,
then the efficiency of algorithms A, As and Az will be shifted by a factor,
whereas for the exponential algorithms A4, A5 the efficiency will be shifted
only by an additive constant, cf. Table 2.9.
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Table 2.9. Speedup of the runtime of different algorithms assuming a hardware
speedup factor of 10 and 100. The efficiency of polynomial algorithms will be shifted
by a factor while exponential algorithms are only improved by an additive constant

Algorithm runtime efficiency speedup factor 10 speedup factor 100

Al n ni 10 x ni 100 x ni

Az n2 n2 \/mxn2:3.16><n2 \/manZ:lOXnQ
A3 ’IL3 ns mxn3:2.15 X n3 \?’/mxm =4.64 X n3
Ay 2m on log,(10 X n4) = n4 + 3.3 log,(100 X n4) = ng + 6.6
As n! ns ~ ns+1 ~ ns + 2

Algorithms A7, As and A3 have polynomial runtimes. An algorithm is said
to be efficient if its runtime — which depends on some input n — has a polyno-
mial upper bound. For example, the runtime function 2n*(log, n)*+3,/n has a
polynomial upper bound (for large n), e.g. n®. In O-notation this is expressed
as O(n*) with k being the degree of the polynomial. Algorithms A4 and As
on the other hand have no polynomial upper limit. Thus, they are called in-
efficient. The class of Problems that can be solved with efficient algorithms —
i.e. algorithms that are polynomially bounded — are denoted with the letter
P, cf. Fig. 2.30 The set of polynomials is closed under addition, multiplica-
tion and composition. Thus, P is a very robust class of problems. Combining
several polynomial algorithms results into an algorithm which again exhibits
a polynomial runtime.

Remark 5. Due to the robustness of the definition of the class P of efficient al-
gorithms, an inefficient algorithm can have a shorter runtime than its efficient

unsolvable runtime
problems
inefficient ;
computable, algorithm |
inefficiently
solvable
p— efficignt
efficiently aloonithm -2
solvable

system size

Fig. 2.30. Illustration of the class P of efficiently solvable problems, inefficiently
solvable and unsolvable problems along with their runtime behavior



2.6 Computer Science, Algorithms, Computability and Turing Machines 103

counterpart, up to a certain system size ng. For example, an algorithm with
a runtime 1000 x n'%% falls into the class P whereas an algorithm with a
runtime 1.1™ is exponential and thus inefficient. However, the exponential al-
gorithm only exhibits longer runtimes than the efficient one for system sizes
n ~ 123000, cf. Fig. 2.30.

In Example 15 on p. 99 the “worst-case” runtime for a simple sort-
algorithm was considered assuming that the i f-condition within the loop of
Algorithm 2.7 is true and thus, three elementary steps are always executed.
In the “best-case” — e.g. if the array has been sorted — this i f-condition is not
true and there are only (n—1)+n(n—1) = n? —1 elementary steps. For a ran-
domly shuffled array one can show that the expectation value for the number
of elementary steps is > ,_,(1/k) =~ Inn [188]. Thus, with a randomly sorted
array the total number of ES in this example is roughly n? + 3nInn. Hence,
the actual runtime of an algorithm lies somewhere between the worst-case and
the average-case runtime behavior, cf. Fig. 2.31.

Remark 6 (Cryptology). The fact, that for certain problems no efficient algo-
rithm is known, is the basis of almost all practical cryptographical concepts,
e.g. password files f(z) on a computer system are generated from the input
x as a new password. However, nobody who can read the password file will
be able to calculate the inverse function f~!(x), i.e. to find an 2’ for which
f~Yz") = f(z). Although the password is not known to the system, it can be
checked simply by calculating the function f(y) again with the provided pass-
word y at login and comparing it with f(z). For the function f, one preferably
used so-called one-way functions, i.e. functions for which f can be calculated
efficiently, but for which no efficient algorithm is known to calculate f~'. For
example, a common choice is f(z) = a*MODn, where x = 1,2,....,n — 1,
a € N and n is a prime number. The number of necessary steps to calculate

Aruntime
worst-case

average-case

best-case

system size n

Fig. 2.31. Illustration of the worst-case, average-case and best-case behavior of
algorithms. The average-case behavior of an algorithm is usually the most difficult
to determine
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this function is given by O(log ), i.e. linear in the binary representation of x
and there is no efficient algorithm to calculate f(z)~1 [189].

A special class of problems for which no efficient algorithms are known
are the so-called NP-complete problems. The letters NP are short for non-
deterministic polynomial runtime. NP problems have the same computability
model as P problems, but with a non-deterministic algorithm. The NP-
complete problems are the most difficult problems in NP in the sense that
they are the smallest subclass of NP that could conceivably remain outside
of P, the class of deterministic polynomial-runtime problems. The reason is
that a deterministic, polynomial-runtime solution to any NP-complete prob-
lem would also be a solution to every other problem in NP.

We provide in the following a formal definition of a NP-problem, fol-
lowing Steven Cook’s original article in which the first NP-problem was
published [190], although in this article the term NP was not yet used.
A Language L, i.e. a “Entscheidungsproblem” lies within the class NP, if
there is an efficient algorithm, which works with two input variables, such
that the following two conditions are fulfilled:

1. If x € L, then there is a second word y as input (where the length |y| of y
has to be polynomial bounded within the length |z|) such that the above
mentioned efficient algorithm provides 1 as output.

2. If x ¢ L, then, after input of z, the output of the efficient algorithm is
always 0, independent of the arbitrary second input y.

This definition is depicted in Fig. 2.32. The importance of it lies in the fact
that no more efficient algorithm for the decision whether « € L is known
except of trying out the complete set of potential input elements y € X' until
the efficient algorithm outputs a 1. When such a y is found then x € L. If
the complete search of all elements y was done and the output was always
0 then = ¢ L. The length of y is bounded by a polynomial p of the length
|z|; Hence, the search effort is of order |X|P(#]) which is exponential, i.e. non-
polynomial. The great importance of NP-class problems lies in the fact that
more than 3000 NP-problems are known from such different research areas
as number theory, computational geometry, graph theory, sets and partitions,
program optimization, automata and language theory and many more, see

x €L x ¢ L
T —1 efficient T —=1 efficient
— 1 — 0
y —| algorithm y —| algorithm
for at least one y Yy

Fig. 2.32. Illustration of a language L that is an element of class NP
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e.g. [190, 191]. This also has consequences for code optimization in materials
science applications. For example, when writing a massive parallel computer
program then there is no known optimization strategy for a domain decom-
position (a splitting of the considered domain into several parts which are
then assigned to different processors) of the considered system which leads
a guaranteed optimal solution. In graph theory there exists no efficient al-
gorithm that minimizes the distance between vertices of a graph which is
of importance, e.g. when generating a high-quality mesh for finite element
applications.

Today, it is generally assumed that all problems in P are contained in the
class NP, cf. Fig. 2.33.

So far, no proof that decides whether P = NP or P # NP is known, i.e. it
is unknown whether NP-complete problems are in fact solvable in polynomial
time?7.

With these remarks we end our discussion of the attempts to formalize the
notions of “computability” and “algorithm”.

2.6.7 Suggested Reading

A good starting point to appreciate the developments in the modeling of real
systems by means of algorithms would be Chabert [192] and Lee [193]. There
is a multitude of excellent textbooks on graph theory, formal languages and
automata. Cormen et al. [194] provides a good introduction to algorithms in
graph theory. Diestel [195] and Gibbons provide a sophisticated treatment of
graph theory. Promel and Steger [196] treat the Steiner tree problem in depth
and provide many useful algorithms for practical problems. Gruska [197] and
Hopferoft [173] provide a solid introduction into the foundations of automata
theory. A good treatment of Markov chains can be found in Motwani [189]. The
original article by Markov is [198] and for an English translation see e.g. [199].
The Monte-Carlo Method was introduced into physics in 1953 by Metropolis

NP-complete

NP \

Fig. 2.33. The NP-complete problems are the smallest subclass of NP for which
no efficient algorithms are known

37 This is one of the great unsolved problems in mathematics. The Clay Mathematics
Institute in Cambridge, MA, U.S.A. is offering a 1 million $ reward to anyone who
has a formal proof that P = NP or that P # NP.
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et al. [23]. A nice historical account of the Turing machine is provided in
Copeland [200]. A standard introduction into complexity and computability
theory is provided by Ausellio et al. [201] or Cooper [202]. Classic textbooks on
computability and NP-problems are e.g. Garey and Johnson [203] or Homer
and Selman [204].

Problems

Problem 1. Proper Time Interval dr
Show that the Lorentz-transformations Afj leave the proper time interval dr
(see p. 51) invariant.

Problem 2. Conservation Laws
State for each of the following particle reactions whether it is forbidden or
not. If applicable, state the conservation law that is violated.

(a) p+p—put +e,
(b)n—p+e +v.,
(c)p—n+et +u,.

Problem 3. Euler-Lagrange Equations
Perform the variation of (2.40) and show that (2.41) are the corresponding
equations of motion.

Problem 4. Klein-Gordon and Dirac Equation

Show that the field ¢ of (2.62) on p. 72 satisfies the correct energy-momentum
relation, i.e. it satisfies the Klein-Gordon equation (2.57). Derive from this a
set of equations for the «; and 3.

push pop
4 Z
\ 4
3 3
2 2
1 1
stack stack

Fig. 2.34. Push (a) and pop (b) operation with stacks
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Problem 5. Abstract Data Types: LIFO Structure
The two basic operations of stacks (LIFO structures) are push (putting one
data element on the stack) and pop, cf. Fig. 2.34.

Write an implementation of the stack with a push and pop functionality in
C++ using a modular design, i.e. use a header file “Stack.h” for declarations,
a file “Stack.cpp” and a main procedure which tests this implementation.

Problem 6. An implementation of the Ackermann function

Write a recursive implementation of the Ackermann function (2.92)a, (2.92)b,
(2.92)c. How long does it take to compute A(5,0)? (You can go and drink a
cup of coffee in the mean time). What about A(5,1)7








