Contents

	Pref	ace	page 1x
1	Euclidean geometry		1
	1.1	Euclidean space	1
	1.2	Isometries	4
	1.3	The group $O(3, \mathbf{R})$	9
	1.4	Curves and their lengths	11
	1.5	Completeness and compactness	15
	1.6	Polygons in the Euclidean plane	17
	Exer	rcises	22
2	Spherical geometry		25
	2.1	Introduction	25
	2.2	Spherical triangles	26
	2.3	Curves on the sphere	29
	2.4	Finite groups of isometries	31
	2.5	Gauss-Bonnet and spherical polygons	34
	2.6	Möbius geometry	39
	2.7	The double cover of $SO(3)$	42
	2.8	Circles on S^2	45
	Exer	rcises	47
3	Triangulations and Euler numbers		51
	3.1	Geometry of the torus	51
	3.2	Triangulations	55
	3.3	Polygonal decompositions	59
	3.4	Topology of the <i>g</i> -holed torus	62
	Exercises		67
	Appendix on polygonal approximations		68
4	Riemannian metrics		75
•	4.1	Revision on derivatives and the Chain Rule	75
	4.2	Riemannian metrics on open subsets of \mathbb{R}^2	79

CONTENTS

4.3	Lengths of curves	82		
4.4	Isometries and areas	85		
Exercises				
Нур	erbolic geometry	89		
5.1	Poincaré models for the hyperbolic plane	89		
5.2	Geometry of the upper half-plane model H	92		
5.3	Geometry of the disc model D	96		
5.4	Reflections in hyperbolic lines	98		
5.5	Hyperbolic triangles	102		
5.6	Parallel and ultraparallel lines	105		
5.7	Hyperboloid model of the hyperbolic plane	107		
Exe	rcises	112		
Smo	ooth embedded surfaces	115		
6.1	Smooth parametrizations	115		
6.2	Lengths and areas	118		
6.3	Surfaces of revolution	121		
6.4	Gaussian curvature of embedded surfaces	123		
Exe	rcises	130		
Geo	desics	133		
7.1	Variations of smooth curves	133		
7.2	Geodesics on embedded surfaces	138		
7.3	Length and energy	140		
7.4	Existence of geodesics	141		
7.5	Geodesic polars and Gauss's lemma	144		
Exer	rcises	150		
Abst	tract surfaces and Gauss-Bonnet	153		
8.1	Gauss's Theorema Egregium	153		
8.2	Abstract smooth surfaces and isometries	155		
8.3	Gauss-Bonnet for geodesic triangles	159		
8.4	Gauss-Bonnet for general closed surfaces	165		
8.5	Plumbing joints and building blocks	170		
Exer	175			
Postscript				
References				
Inde	181			