Contents

1.	A Re	eview o	f The	eories	of	Intelligence	1
----	------	---------	-------	--------	----	--------------	---

2. Genetic Epistemology and Mathematics 5

Logic and Psychology 6
Basic Mathematical and Psychological Structures
Biology and Intelligence 9
Piaget, Skinner, and Performance Objectives 9
Mathematical Models for Children's Thinking 11

3. Jean Piaget: Biography and Views on Education 14

Piaget's Biography 14
Professional Education 19
Training Elementary Teachers 19
Early Childhood (Preschool) Instruction 20
Teaching Aids 22
Motivating the Learner 22
Social Interaction Versus Individualized Programming in Lesson Planning 23

4. Piaget's Theory of Intellectual Development 24

Stages of Development 24
Factors Affecting Mental Development 3

vi Contents

Equilibration as a Biological Process 34
Psychological and Mathematical Operations 35
Definition of an Operation 36
Biology, Mathematics, and Three Types of Knowledge 36
Learning 38
Language and Intelligence 44
Social Interaction 46
Memory and Intelligence 46
Piaget and IO Tests 49

5. Logical Classification 51

First Experiences in Logical Classification 52 Simple Classification 52 Relations Between Sets or Classes The Inclusion Relation The Quantifiers "All," "Some," "None," and "One" 59 Hierarchical Classification Multiple Classification Logical Classification Games 63 Logical Connectives "Brother of" and "Right and Left of" as Logical Relations **Implications** 78 Exercise ጸበ

6. First Experiences with Number 81

Class and Number 82
Conservation of Number 82
Stages of Development 84
Three Levels of Counting to Determine Number Relations 92
Other Types of Conservation and Age Levels 95
Seriation (Ordering), Transitivity, and Ordinal Number 97
Place Value and Base Ten 103
Implications for Teaching 105

7. Addition and Subtraction 111

Grouping and the Inclusion Relation 111
Addition of Number 117

The Commutative Property of Addition 122
The Associative Property of Addition 124
Subtraction of Numbers Expressed
with Two and Three Digits 127
Implications for Teaching Addition and Subtraction 127

8. Multiplication and Division 133

Multiplicative Classification (Matrices) 134
Development of the Equivalence Relation 136
Division into Equal Parts 142
Implications and Follow-up Activities 145
Distributive Property of Multiplication over Addition 150

9. Fractions and Proportions 153

Fractions 153
Exercise 159
Ratio and Proportion 159
Speed and Time 160
Proportions and Probability 162
Geometrical Proportions 163

10. Time 166

166 Sequencing of Events Duration 168 Physical Time 169 Transitivity 170 Measurement of Time 170 Summary and Implications 174 Speed and Time 175 Conservation and Measurement of Time 177 Time in Terms of Age 180

11. The Growth of Logical Thought 183

Egocentrism of Thought 183 Introspection 184

viii Contents

Transduction 185
Definitions in Logical Thinking 186
Children's Understanding of Connectives in Logic 188
Inductive and Deductive Reasoning 194
Stages of Logic or Reasoning 205
Implications for the Teacher 207

12. How a Child Begins to Think About Space 209

Topology 210
Relations in Topology 214
The Topological Relation of Order 216
The Topological Relation of Surrounding or Enclosure 219
The Relations of Continuity and Infinity 223
Implications 226

13. From Topology to Euclidean Geometry 232

Pictorial Space 232
Drawing Basic Euclidean Shapes 234
Perception and Thought 238
Space on a Perceptual Basis 239
Learning Euclidean Shapes 239
Teaching Euclidean Shapes 244
Implications 245

14. Measurement in One Dimension 247

First Attempts at Measurement 249
Conservation of Distance and Length 253
Measurement of Length 263
Implications 269

15. Structuring Space in Terms of Vertical and Horizontal Axes 271

A Child's Frame of Reference 272 General Systems of Reference 277 Making a Map 280 Construction of a Layout 282 Implications 286

16. Measurement in Two and Three Dimensions 288

Locating a Point in Two-Dimensional Space 289
Area Measurement 290
Conservation and Measurement of Area 292
Measurement of Volume 299
Construction of Equal Angles 303
Implications for Teaching 311

17. Projective Geometry 314

Linear Perspective (Straightness) 315 Objects Seen in Perspective 319 Projection of Shadows 321

18. The Mathematics Laboratory— An Individualized Approach to Learning 325

How to Begin a Mathematics Laboratory 328
Moral Behavior 333
Materials and Their Use 335
Care of Materials 343
Sample Assignments for Children 351
Exercise for Teachers 352

19. Conclusions 353

The Importance of Developmental Stages 354 Testing 357 358 Interview Technique The Classroom as a Laboratory 360 Social Interaction and Lesson Planning Acceleration of Learning 361 The New Math 362 Educational Philosophy and Psychology 362 The Acquisition of Knowledge Teacher Training 364

Appendix: Diagnostic Activities 367

Index 369