TABLE OF CONTENTS

PREFACE			xiii
ACKNOWLEI	OGEMEN'	TS	xvii
		INTRODUCTION	
CHAPTER 1 :	The Psyc	chology of Advanced Mathematical Thinking David Tall	3
1.	Cogniti	ive considerations	4
**	1.1	Different kinds of mathematical mind	4
	1.2	Meta-theoretical considerations	6
	1.3	Concept image and concept definition	6
	1.4	Cognitive development	7
	1.5	Transition and mental reconstruction	9
	1.6	Obstacles	9
	1.7	Generalization and abstraction	11
	1.8	Intuition and rigour	13
2.	The gre	owth of mathematical knowledge	14
	2.1	The full range of advanced mathematical thinking	14
	2.2	Building and testing theories: synthesis and analysis	15
	2.3	Mathematical proof	16
3.	Curriculum design in advanced mathematical learning		17
	3.1	Sequencing the learning experience	17
	3.2	Problem-solving	18
	3.3	Proof	19
	3.4	Differences between elementary and advanced	
		mathematical thinking	20
4.	Lookin	g ahead	20

I : THE NATURE OF ADVANCED MATHEMATICAL THINKING

CHAPTER 2	: Advanced Mathematical Thinking Processes Tommy Dreyfus	25
1.	Advanced mathematical thinking as process	26
2.	Processes involved in representation	30
	2.1 The process of representing	30
	2.2 Switching representations and translating	32
	2.3 Modelling	34
3.	Processes involved in abstraction	34
	3.1 Generalizing	35
	3.2 Synthesizing	35
	3.3 Abstracting	36
4.	Relationships between representing and abstracting (in learning	
	processes)	38
5.	A wider vista of advanced mathematical processes	40
CHAPTER 3	: Mathematical Creativity Gontran Ervynck	42
1.	The stages of development of mathematical creativity	42
2.	The structure of a mathematical theory	46
3.	A tentative definition of mathematical creativity	
4.	The ingredients of mathematical creativity	
5.	The motive power of mathematical creativity	
6.	The characteristics of mathematical creativity	
7.	The results of mathematical creativity	50 52
8.	The fallibility of mathematical creativity	
9.	Consequences in teaching advanced mathematical thinking	52
CHAPTER 4	: Mathematical Proof Gila Hanna	54
1.	Origins of the emphasis on formal proof	55
2.	More recent views of mathematics	55
3.	Factors in acceptance of a proof	58
4.	The social process	59
5.	Careful reasoning	60
6.	Teaching	60
	-	

II: COGNITIVE THEORY OF ADVANCED MATHEMATICAL THINKING

CHAPTER 5: The Role of Definitions in the Tea Mathematics			of Definitions in the Teaching and Learning of Shlomo Vinner	65
	1.	Definiti	ons in mathematics and common assumptions about	
		pedago	*	65
	2.		gnitive situation	67
	3.	Concep		68
	4.		t formation	69
	5.		cal contexts	69
	6.		t image and concept definition - desirable theory and	0)
	0.	practice		69
	7.		llustrations of common concept images	73
	8.		mplications for teaching	79
	0.	Some n	inplications for toaching	,,
СНАРТ	ER 6 · T	he Role	of Conceptual Entities and their symbols in building	
CILL I			ematical Concepts Guershon Harel & James Kaput	t 82
	1.	Throa r	olar of concentual antition	63
	1.		oles of conceptual entities	83
		1.1	Working-memory load	84
		1.2a	Comprehension: the case of "uniform" and "point-wise" operators	84
		1.2b	Comprehension: the case of object-valued operators	86
		1.3	Conceptual entities as aids to focus	88
	2.		f mathematical notations	88
		2.1	Notation and formation of cognitive	
			entities	89
		2.2	Reflecting structure in elaborated notations	91
	3.	Summa		93
			-5	
СНАРТ	ER 7 : R	eflective	Abstraction in Advanced Mathematical Thinking	
			Ed Dubinsky	95
	1 Diaget	'e notion	of reflective abstraction	97
	1.1 lagot	1.1	The importance of reflective abstraction	97
		1.2	The nature of reflective abstraction	99
		1.3	Examples of reflective abstraction in children's thinking	100
		1.5	Various kinds of construction in	100
		1,4	reflective abstraction	101
	2	A than-	y of the development of concepts in advanced	101
	2.		y of the development of concepts in advanced	102

TABLE OF CONTENTS

	2.1 Objects, processes and schemas		102
	2.2 Constructions in advanced mathemat	tical concepts	103
	2.3 The organization of schemas		106
3.	Genetic decompositions of three schemas		109
.	3.1 Mathematical induction		110
	3.2 Predicate calculus		114
	3.3 Function		116
4.	Implications for education		119
	4.1 Inadequacy of traditional teaching p	ractices	120
	4.2 What can be done		123
***	RESEARCH INTO THE TEACHING A	NID I EADNING	
1111:			
	OF ADVANCED MATHEMATICAL T	HINKING	
CHAPTER	8: Research in Teaching and Learning Mathemati	cs at an Advanced	
Lev	44° TO 1 4 0 TO	olph Schwarzenberger	: 127
1.	Do there exist features specific to the learning	ng of advanced	
	mathematics?		128
	1.1 Social factors		128
	1.2 Mathematical content		128
	1.3 Assessment of students' work		130
	1.4 Psychological and cognitive charact	eristics of students	131
	1.5 Hypotheses on student acquisition of	of knowledge in	
	advanced mathematics		132
	1.6 Conclusion		133
2.	Research on learning mathematics at the adv	vanced level	133
	2.1 Research into students' acquisition	of specific concepts	134
	2.2 Research into the organization of m	nathematical content	
	at an advanced level		134
	2.3 Research on the external environme	ent for advanced	
	mathematical thinking		136
3.	Conclusion		139
CHAPTER	9: Functions and associated learning difficulties		
	•	Theodore Eisenberg	140
1.	Historical background		140
2.			142
3.	Variables		144
4.	Functions, graphs and visualization		145
5.	Abstraction, notation, and anxiety		148
6	Representational difficulties 15		

		TABLE OF CONTENTS	ix	
	7.Sum	mary	152	
CHAPTER 10: Limits		Bernard Cornu	153	
1.	Sponta	aneous conceptions and mental models	154	
2.	Cogni	tive obstacles	158	
3.		Epistemological obstacles in historical development		
4.	Epistemological obstacles in modern mathematics			
5.	The didactical transmission of epistemological obstacles			
6.	Towar	ds pedagogical strategies	165	
CHAPTER 11:	Analys	is Michèle Artigue	167	
1.	Histor	ical background	168	
	1.1	Some concepts emerged early but were established late	168	
	1.2	Some concepts cause both enthusiasm and virulent	1.00	
	1.3	criticism The differential/derivative conflict and its educational	168	
	1.5	•	169	
	1.4	repercussions The non-standard analysis revival and its weak impact on		
	1.4	education	172	
	1.5	Current educational trends	173	
2.		nt conceptions	174	
2.	2.1	A cross-sectional study of the understanding of	1/4	
	2.1	elementary calculus in adolescents and young adults	176	
	2.2	A study of student conceptions of the differential, and	1,0	
		of the processes of differentiation and integration	180	
		2.2.1 The meaning and usefulness of differentials and		
		differential procedures	180	
		2.2.2 Approximation and rigour in reasoning	182	
		2.2.3 The role of differential elements	184	
	2.3	The role of education	186	
3.	Resear	rch in didactic engineering	186	
	3.1	"Graphic calculus"	187	
	3.2	Teaching integration through scientific debate	191	
	3.3	Didactic engineering in teaching differential equations	193	
	3.4	Summary	195	
4.	Conclu	usion and future perspectives in education	196	
CHAPTER 12	The Ro	ole of Students' Intuitions of Infinity in Teaching the		
			199	
1.	Theore	etical conceptions of infinity	200	

2.	Students' conceptions of infinity	201	
	2.1 Students' intuitive criteria for comparing infinite		
	quantities	203	
3.	First steps towards improving students' intuitive understanding of		
	actual infinity	205	
	3.1 The "finite and infinite sets" learning unit	206	
	3.2 Raising students' awareness of the inconsistencies in		
	their own thinking	206	
	3.3 Discussing the origins of students' intuitions about		
	infinity	207	
	3.4 Progressing from finite to infinite sets	207	
	3.5 Stressing that it is legitimate to wonder about infinity	208	
	3.6 Emphasizing the relativity of mathematics	208	
	3.7 Strengthening students' confidence in the new definitions	209	
4.	Changes in students' understanding of actual infinity	209	
5.	Final comments	214	
NIAPPED 12	: Research on Mathematical Proof		
CHAPIER 13	Daniel Alibert & Michael Thomas	215	
	Daniel Amount & Mondel Homes		
1.	Introduction	215	
2.	Students' understanding of proofs	216	
3.	The structural method of proof exposition	219	
	3.1 A proof in linear style	221	
	3.2 A proof in structural style	222	
4.	Conjectures and proofs - the scientific debate in a mathematical		
	course	224	
	4.1 Generating scientific debate	225	
	4.2 An example of scientific debate	226	
	4.3 The organization of proof debates	228	
	4.4 Evaluating the role of debate	229	
5.	Conclusion	229	
CHAPTER 14	: Advanced Mathematical Thinking and the Computer	231	
	Ed Dubinsky and David Tall	231	
1.	Introduction	231	
2.	The computer in mathematical research	231	
3.	The computer in mathematical research The computer in mathematical education - generalities 2		
3. 4.	Symbolic manipulators	235	
5.	Conceptual development using a computer	237	
5. 6.	The computer as an environment for exploration of fundamental		
0.	ideas	238	

7	7.	Programming		241
8	8.	The future		243
Appendix to Chapter 14 ISETL: a computer language for advanced mathematical thinking			244	
			•	
EPILOGUE				
СНАРТЕ	ER 15:	Reflections	David Tall	251
BIBLIOG	GRAPH	Y		261

INDEX

TABLE OF CONTENTS

хi

275