TABLE OF CONTENTS | INTRODUCTION
by Wolfgang Edelstein and Wolfgang Lefèvre | хi | |---|----------------------------| | ON ACTION AND COGNITION | | | CHAPTER 1. ACTION AND COGNITION IN PIAGET'S GENETIC EPISTEMOLOGY AND IN HEGEL'S LOGIC | 1 | | Notes
Bibliography | 10
27 | | CHAPTER 2. REPRESENTATION AND MEANING | 29 | | Examples of Cognitive Structures Cognitive Structures and Material Action Cognitive Structures and Language Notes Bibliography | 29
42
46
54
67 | | EDUCATION IN CONTEXT | | | CHAPTER 3. PHILOSOPHICAL AND PEDAGOGICAL REMARKS
ON THE CONCEPT "ABSTRACT" | 71 | | The Common Usage of the Concept in the Didactics of Mathematics
Abstraction as the Isolation of Qualities
The Concept of Abstraction of Formal Logic
The Empiricist Concept of Abstraction
Models of Abstraction Based on Constitution Theory | 71
72
73
75
75 | | The Dialectical Concept of Abstraction The "Normal" Pattern of Teaching On the Interpretation of Learning Processes in Cognitive Psychology Understanding the Facts | 76
78
79
80 | | The Function of Exercises | 81 | |--|------| | Abstraction and Concretization in Mathematics Teaching | 83 | | Bibliography | 86 | | | | | CHAPTER 4. WHAT IS MATHEMATICAL ABILITY AND HOW | | | DO ABILITY DIFFERENCES EMERGE IN MATHEMATICS | 87 | | EDUCATION? | 0/ | | The Appearance of Mathematical Competence in Mathematics | | | Education | 87 | | Psychometric Constructs of Ability | 93 | | Abilities as Cognitive Structures | 98 | | Notes | 108 | | Bibliography | 110 | | | | | CHAPTER 5. MATHEMATICS EDUCATION AND SOCIETY | 111 | | Introduction | 111 | | The Vicinities of Mathematics— Mathematics of the Vicinities | 113 | | Transmission of Knowledge Predetermined By Specific Ends | 118 | | The Training of the Mind | 122 | | Mathematics as a Profession | 126 | | The Emergence of School Mathematics | 131 | | Mathematics Education in the Context of Modern Institutional | | | Conditions | 138 | | Notes | 144 | | Bibliography | 145 | | | | | CHAPTER 6. PRELIMINARY REMARKS ON THE RELATIONSHIP | | | OF THE PRINCIPLES OF TEACHING ARITHMETIC TO THE EARLY | 4.40 | | HISTORY OFMATHEMATICS | 149 | | In Retrospect: Repetition in Unison | 149 | | Action as the Starting Point for Mathematical Thinking? | 151 | | On the Role of Historical Conditions of the Development of | | | Mathematical Thinking | 152 | | The Early History of Arithmetic as a Touchstone | 153 | | Arithmetic as a System of Rules for Material | 154 | | Representatives of Numbers | 154 | | The Arithmetic of Constructive-Additive Sign Systems | 156 | | Developmental Stages of Mesopotamian Arithmetic | 159 | | | - | | Theoretical Perspective | 167 | | |--|------------|--| | Notes
Bibliography | 169
170 | | | | | | | CULTURAL EVOLUTION OF ARITHMETICAL THINKING | | | | IIIIIVKIIVO | | | | CHAPTER 7. THE DEVELOPMENT OF ARITHMETICAL THINKING: ON THE ROLE OF CALCULATING AIDS IN ANCIENT EGYPTIAN AND BABYLONIAN ARITHMETIC | 173 | | | Preliminary Remarks: Reckoning Board and Rod Numerals | 173 | | | Structural Characteristics of Ancient Egyptian Arithmetic | 176 | | | The Means of Calculation in Ancient Egypt | 188 | | | The Sources for Reconstructing the History of Old Babylonian | | | | Arithmetic | 199 | | | Structural Characteristics of Old Babylonian Arithmetic | 204 | | | The History of Mesopotamian Calculating Aids | 211 | | | CHAPTER 8. THE FIRST REPRESENTATIONS OF NUMBERS | | | | AND THE DEVELOPMENT OF THE NUMBER CONCEPT | 275 | | | Characteristics of the Numerical Signs in the Archaic Texts | 275 | | | Earlier Attempts at Interpretation | 276 | | | Rules for Using the Signs | 279 | | | Summations | 281 | | | Statistics as a Method of Decipherment | 284 | | | The Decipherment of Calendar Entries | 286 | | | Numerical Sign Systems with Specific Areas of Application | 288 | | | The Lack of an Abstract Number Concept | 291 | | | Number Analogues | 293
294 | | | From Number Analogues to the Abstract Number Concept | 294 | | | Bibliography | 291 | | | CHAPTER 9. ON THE RELATIONSHIP BETWEEN ONTOGENESIS | 200 | | | AND HISTORIOGENESIS OF THE NUMBER CONCEPT | 299 | | | On the Preconditions of Piaget's Constructivist Conception of Numbers | 301 | | | NUMBER | 201 | | TABLE OF CONTENTS ix | Ontogenesis of the Number Concept in Piaget's Genetic | | |--|-----| | Epistemology | 302 | | Historiogenesis of the Number Concept in Piaget's Genetic | | | Epistemology | 308 | | Symbolic Representation and Historical Transmission | 314 | | Protoarithmetic of a Stone Age Culture | 321 | | Protoarithmetical Techniques in the Transition to a Literate | | | Culture | 329 | | Ontogenesis and Historiogenesis of the Number Concept | 354 | | Notes | 362 | | Bibliography | 367 | | | | | ON HISTORICAL EPISTEMOLOGY | | | CHAPTER 10. ABSTRACTION AND REPRESENTATION | 371 | | Bibliography | 381 | | CHAPTER 11. THE CONCEPT OF LABOR IN HISTORICAL | | | MATERIALISM AND THE THEORY OF SOCIO-HISTORICAL | | | DEVELOPMENT | 383 | | Labor in Human History | 383 | | Biological Evolution and Historical Development | 387 | | CHAPTER 12. TOOLS OF SCIENCE | 395 | | Labor and Cognition | 395 | | The Emergence of Science | 396 | | The Role of the Tools of Scientific Work | 398 | | Continuity and Discontinuity of the Development of Science | 401 | | LIST OF ORIGINAL PUBLICATIONS | 405 | | NAME INDEX | 407 | | SUBJECT INDEX | 411 |