Contents

	List of contributors	хi
	Preface	1
1.1 1.2	Introduction Constraints on speech synthesis Synthesis techniques Functional outline of MITalk	7 7 9 12
I	Analysis	
2.1 2.2 2.3	Text preprocessing Overview Input Output Formatting operations	16 16 17 18 18
3.1 3.2 3.3 3.4 3.5	Morphological analysis Overview Input Output The algorithm An example of a decomposition The lexicon	23 23 27 27 28 35 36
4.1 4.2 4.3 4.4 4.5 4.6	The phrase-level parser Overview Input Output Parts of speech The part-of-speech processor The parser algorithm Some examples	40 40 41 41 41 43 45 51
5.1 5.2 5.3 5.4 5.5	Morphophonemics and stress adjustment Overview Input Output Morphophonemic rules Stress modification rules An example	52 52 52 52 52 52 54 54
6.1 6.2 6.3	Letter-to-sound and lexical stress Overview Letter-to-sound Lexical stress placement An example	57 57 57 61 69

II	Synthesis
_ 7	Survey of

7.1 7.2 7.3	7 Survey of speech synthesis technology 1 Overview 2 Background 3 Synthesis techniques 4 Applications	71 71 72 73 79
8.1 8.2 8.3 8.4 8.5 8.6 8.7	The phonological component Overview Input representation for a sentence Comparison between ideal synthesis input and system performance Stress rules Rules of segmental phonology Pauses Evaluation of the analysis modules	81 81 85 86 87 88
9.1	The prosodic component Overview Segmental durations	93 93 93
10.1 10.2 10.3 10.4 10.5	The fundamental frequency generator Overview Input Output The O'Shaughnessy fundamental frequency algorithm Adjustments to the O'Shaughnessy algorithm Potential improvements from additional syntactic information	100 100 101 102 103 107 107
11 11.1 11.2 11.3	The phonetic component Overview "Synthesis-by-analysis" of consonant-vowel syllables General rules for the synthesis of phonetic sequences Summary	108 108 109 116 122
12.1 12.2	The Klatt formant synthesizer Overview Vocal tract transfer functions Radiation characteristic	123 123 139 150
13.1 13.2 13.3 13.4	Some measures of intelligibility and comprehension Overview Phoneme recognition Word recognition in sentences Comprehension General discussion and conclusions	151 151 152 157 161 167
14.1 14.2 14.3 14.4	Implementation Conceptual organization Development system Performance system UNIX implementation Using the system	172 172 173 174 174

	Appendixes	
A	Part-of-speech processor	177
В	Klatt symbols	179
C	Context-dependent rules for PHONET	181
D	Sample test trials from the Modified Rhyme Test	202
E	Sample test materials from the Harvard Psychoacoustic Sentences	203
F	Sample test materials from the Haskins Anomalous Sentences	204
3	Sample passage used to test listening comprehension	205
	References	207
	Index	215

List of figures

2-1	Example of FORMAT processing	18
3-1	State transition diagram for the morph sequence FSM	31
3-2	Decomposition of "scarcity"	37
4-1	Noun group ATN listing	47
4-2	Verb group ATN listing	48
4-3	ATN diagram for verb groups	49
4-4	ATN diagram for noun groups	50
4-5	Example of PARSER operation	51
5-1	Input to and output from SOUND1	55
6-1	Suffix detection in the word finishing	58
6-2	Application of letter-to-sound rules to caribou	60
6-3	Application of letter-to-sound rules to subversion	60
6-4	Example of letter-to-sound and stress rule operation	69
7-1	Synthesis blocks of the MITalk system	72
7-2	An example of the differences between words spoken in isolation and	12
	words spoken as a continuous utterance	74
8-1	Example of PHONO1 and PHONO2 processing	82
9-1	Example of the processing performed by PROSOD	94
10-1	Example of F0 contours	105
11-1	Spectrum analysis of a speech waveform	111
11-2	First and second formant motions in English vowels	112
11-3	Linear prediction of plosive bursts before vowels	113
11-4	Frequency of the lowest three formants measured at voicing onset for	113
	syllables involving BB, DD, and GG	114
11-5	Synthesis strategy for a CV syllable	115
11-6	Templates for smoothing adjacent phonetic segment targets	117
11-7	Constants used to specify the inherent formant and durational	11/
	characteristics of a sonorant	120
12-1	Interface between synthesizer software and hardware	123
12-2	Components of the output spectrum of a speech sound	125
12-3	Parallel and cascade simulation of the vocal tract transfer function	126
12-4	Cascade/parallel configurations supported by MITalk	127
12-5	Block diagram and frequency response of a digital resonator	129
12-6	Block diagram of the cascade/parallel formant synthesizer	131
2-7	Four periods from voicing waveforms	135
12-8	Waveform segment and magnitude spectrum of frication noise	137
2-9	Magnitude of the vocal tract transfer function	141
2-10	Nasalization of the vowel IH in the syllable "dim"	143
2-11	Effect of parameter changes on the vocal tract transfer function	146
2-12	Preemphasized output spectra from cascade and parallel models	148
2-13	Spectra from two different parallel synthesis configurations	
2-14		149
3-1	Average percent errors across various manner classes	150
3-2	Distribution of errors and most frequent perceptual confusions	154
_	and most request perceptual confusions	155

List of figures

13-3	Percent correct comprehension scores for reading and listening groups	165
14-1	Sample MITalk session	176
	Pre-aspiration parameter smoothing	189
C-2	Diphthong transition smoothing	194

List of tables

2-1	Abbreviation translations performed by FORMAT	19
3-1	Morph spelling change rules for vocalic suffixes	36
8-1	Klatt symbols used in the synthesis modules	84
9-1	Minimum and inherent durations in msec for each segment type	96
10-1	Relative peak levels of words according to their parts of speech	101
11-1	Parameter values for the synthesis of selected vowels	119
11-2	Parameter values for the synthesis of selected components of English	
	consonants before front vowels	121
11-3	Variable control parameters specified in PHONET	122
12-1	List of control parameters for the software formant synthesizer	132
13-1	Characteristics of the passages used to measure comprehension	163
B-1	Klatt symbols for phonetic segments	179
B-2	Klatt symbols for nonsegmental units	180
C-1	Parameter targets for nonvocalic segments	186
C-2	Parameter targets for vocalic segments	187
C-3	Default values for duration of forward smoothing (Tcf)	188
C-4	Default values for Bper	188
C-5	Diphthong transition parameters	194
C-6	Duration of forward smoothing for obstruents (Tcobst)	196
C-7	Default plosive burst duration	197