Contents

The Cosmic Landscape

The Earth, Our Home, 2 The Moon, 2 The Planets, 4 The Sun, 4 The Solar System, 4 A Sense of Scale, 5 The Astronomical Unit, 7 The Milky Way Galaxy, 7 The Light Year, 9 Galaxy Clusters and the Universe, 10 The Scientific Method, 11

CHAPTER 1 History of Astronomy

1-1 Prehistoric Astronomy, 18 The Celestial Sphere, 19 Constellations, 20 Motions of the Sun and Stars, 21 Daily or Diurnal Motion, 21 Annual Motion, 23 The Ecliptic, 23 Solstices and Equinoxes, 25 The Planets and the Zodiac, 27 The Moon, 29 Eclipses, 30 1-2 Early Ideas of the Heavens: Classical Astronomy, 32 The Shape of the Earth, 32 The Size of the Earth, 33 Distance and Size of Sun and Moon, 35 Extending Our Reach: Measuring the Diameter of Astronomical Objects, 38 The Motion of the Planets, 40 Ptolemy, 41 Islamic Contributions, 41 Asian Contributions, 42 1-3 Astronomy in the Middle Ages, 42 Copernicus, 42 Tycho and Kepler, 44 Galileo, 48 1-4 Isaac Newton and the Birth of Astrophysics, 50 1-5 The Growth of Astrophysics, 50 New Discoveries, 51

New Technologies, 51 The Nature of Matter and Heat, 51 The Kelvin Temperature Scale, 52 Projects, 51

ESSAY 1 Backyard Astronomy

Learning the Constellations, E1-0 Star Lore, E1-0 Amateur Astronomy, E1-4 Small Telescopes, E1-5 Celestial Coordinates, E1-5 Star Charts, E1-5 Planetary Configurations, E1-7 Your Eyes at Night, E1-8

CHAPTER 2 Gravity and Motion

- 2-1 Solving the Problem of Astronomical Motion, 60
- 2-2 Inertia, 60
- 2-3 Orbital Motion and Gravity, 62
- 2-4 Newton's Second Law of Motion, 64 Acceleration, 64 Mass, 65
- 2-5 The Law of Gravity, 66
- 2-6 Newton's Third Law, 67
- 2-7 Measuring a Body's Mass Using Orbital Motion, 68
- 2-8 Surface Gravity, 70
- 2-9 Escape Velocity, 73

CHAPTER 3 Light and Atoms

- 3-1 Properties of Light, 78 The Nature of Light-Waves or Particles?, 79 Photons, 80 Light and Color, 80 Characterizing Electromagnetic Waves by their Frequency, 81 White Light, 82 3-2 The Electromagnetic Spectrum: Beyond Visible Light, 82 Infrared Radiation, 83 Ultraviolet Light, 84 Radio Waves, 84 Energy Carried by Electromagnetic Waves, 86 Wien's Law: a Wavelength-Temperature Relation, 86 Extending Our Reach: Taking the Temperature of the Sun, 87 Black Bodies and Wien's Law, 88 3-3 Atoms, 89 Structure of Atoms, 89 The Chemical Elements, 91
- 3-4 The Origin of Light, 92

- 3-5 Formation of a Spectrum, 93
 How a Spectrum is Formed, 93
 Spectra of Molecules, 97
 Types of Spectra, 97
 Depicting Spectra, 99
 Analyzing the Spectrum, 99
 Astronomical Spectra, 99
- 3-6 The Doppler Shift, 101
- 3-7 Absorption in the Atmosphere, 102 Projects, 107

ESSAY 2 Light in the Atmosphere

Refraction and Dispersion, E2-0 Atmospheric Refraction and Dispersion, E2-1 Distortion of the Sun's Shape, E2-1 The Moon Illusion, E2-2 Twinkling of Stars, E2-3 Atmospheric Scattering, E2-4 The Blue Color of the Sky, E2-4

CHAPTER 4 The Earth

- 4-1 The Earth as a Planet, 110
 Shape and Size of the Earth, 110
 Composition of the Earth, 112
 Density of the Earth, 113
 Extending Our Reach: Measuring the Earth's Mass, 114
- 4-2 The Earth's Interior, 114Probing the Interior with Earthquake Waves, 114Heating of the Earth's Core, 118
- 4-3 The Age of the Earth, 119
- 4-4 Motions in the Earth's Interior, 120 Convection in the Earth's Interior, 121 Plate Tectonics, 121
- 4-5 The Earth's Atmosphere, 124
 Composition of the Atmosphere, 124
 Extending Our Reach: Measuring Motion of Plates Across Time, 125
 Origin of the Atmosphere, 126
 The Ozone Layer, 128
 The Greenhouse Effect, 128
 Structure of the Atmosphere, 129
- 4-6 Earth's Magnetic Field, 130
 Origin of the Earth's Magnetic Field, 131
 Magnetic Effects in the Upper Atmosphere, 132
- 47 Motions of the Earth, 134 The Seasons, 134 Air and Ocean Circulation: The Coriolis Effect, 136 Precession, 137

ESSAY 3 Telescopes and Instruments

Telescopes, E3-1 Collecting Power, E3-1 Refracting Telescopes, E3-2 Reflecting Telescopes, E3-2 Resolving Power, E3-5 Observatories, E3-7 Detecting the Light, E3-8 Observing at Non-Visible Wavelengths, E3-9 Observatories in Space, E3-11 Atmospheric Blurring, E3-13 Space versus Ground-based Observatories, E3-14 Going Observing, E3-15 Computers, E3-15 Astronomers, E3-15

CHAPTER 5 The Moon

- 5-1 Description of the Moon, 144
 General Features, 144
 Surface Features, 145
 Origin of Lunar Surface Features, 146
 5 2 Structure of the Moon, 149
- Crust and Interior, 150 Absence of a Lunar Atmosphere, 151
- 5-3 Orbit and Motions of the Moon, 151 The Moon's Rotation, 152 Oddities of the Moon's Orbit, 152
- 5-4 Origin and History of the Moon, 154
- 5-5 Eclipses, 156 Rarity of Eclipses, 156 Appearance of Eclipses, 159
- 5-6 Tides, 162 Cause of Tides, 162 Solar Tides, 164 Tidal Braking, 164
- 5-7 Moon Lore, 165

ESSAY 4 Keeping Time

Length of the Daylight Hours, E4-0 The Day, E4-0 Time Zones, E4-3 Universal Time, E4-4 Daylight Saving Time, E4-4 The Month, E4-4 The Calendar, E4-6 Leap Year, E4-6 Religious Calendars, E4-7 Other Calenders, E4-7 Names of the Months and Days, E4-7 The Abbreviations A.M., P.M., B.C., and A.D., E4-8

CHAPTER 6 Overview of the Solar System

- 6-1 Components of the Solar System, 173

 The Sun, 173
 The Planets, 173
 Two Types of Planets, 174
 Satellites, 175
 Asteroids and Comets, 176
 Composition Differences Between the Inner and Outer Planets, 177
 Extending Our Reach: Bode's Law: The Search for Order, 178
 Density as a Measure of a Planet's Composition, 179
 Age of the Solar System, 180

 6-2 Origin of the Solar System, 181
- Interstellar Clouds, 182
 Formation of the Solar Nebula, 183
 Condensation in the Solar Nebula, 184
 Accretion and Planetesimals, 185
 Formation of the Planets, 186
 Formation of Moons, 188
 Final Stages of Planet Formation, 188
 Formation of Atmospheres, 190
 Cleaning up the Solar System, 190

CHAPTER 7 The Terrestrial Planets

7-1	Portraits of the Terrestrial Planets, 196
	Mercury, 198
	Mercury's Temperature and Atmosphere, 199
	Mercury's Interior, 200
	Mercury's Rotation, 202
7-3	Venus, 203
	The Venusian Atmosphere, 204
	The Greenhouse Effect, 205
	The Surface of Venus, 206
	Interior of Venus, 209
	Rotation of Venus, 210
7-4	Mars, 210
	The Martian Atmosphere, 214
	The Martian Interior, 217
	The Martian Moons, 218
	Life on Mars?, 219
7-5	Why are the Terrestrial Planets so Different?, 219
	Role of Mass and Radius, 220
	Role of Internal Activity, 220
	Role of Sunlight, 220
	Role of Water Content, 221
	Role of Biological Processes, 221

CHAPTER 8 The Outer Planets

8-1 Jupiter, 230 Appearance and Physical Properties, 230 Jupiter's Interior, 231 Jupiter's Atmosphere, 233 Jupiter's Ring, 235 Jupiter's Moons, 236 8-2 Saturn, 239 Saturn's Appearance and Physical Properties, 239 Saturn's Rings, 240 Origin of Planetary Rings, 243 The Roche Limit, 243 Saturn's Moons, 244 8-3 Uranus, 246 Uranus's Atmosphere, 246 Uranus's Interior, 247 Uranus's Rings and Moons, 248 Uranus's Odd Tilt, 249 8-4 Neptune, 250 Neptune's Structure, 251 Neptune's Atmosphere, 251 Neptune's Rings and Moons, 252 8-5 Pluto, 254

CHAPTER 9 Meteors, Asteroids, and Comets

- 9-1 Meteors and Meteorites, 262 Heating of Meteors, 262 Meteorites, 264
 9-2 Asteroids, 265
- Size and Shape, 266 Composition, 267 Origin of Asteroids, 267 Unusual Asteroids, 268
- 9-3 Comets, 270
 Structure of Comets, 270
 Composition of Comets, 271
 Origin of Comets, 272
 Formation of the Comet's Tail, 274
 Light from the Comet's Tail, 275
 Short-Period Comets, 275
 Fate of Short-Period Comets, 276
 Meteor Showers, 277
 9-4 Giant Impacts, 278
- Giant Impacts, 278 Giant Meteor Craters, 279 Mass Extinction and Asteroid/Comet Impacts, 280

CHAPTER 10 The Sun, Our Star

10-1 Size and Structure, 286
Measuring the Sun's Properties, 287
The Solar Interior, 287
Energy Transport, 288
The Solar Atmosphere, 290

10-2 How the Sun Works, 292
Hydrostatic Equilibrium, 292
Pressure in the Sun, 292
Powering the Sun, 293
Nuclear Fusion, 294
The Structure of Hydrogen and Helium, 294
The Proton-Proton Chain, 294

- 10-3 Probing the Sun's Core, 296 Solar Neutrinos, 296 Solar Seismology, 298
- 10-4 Solar Magnetic Activity, 299
 Sunspots, 299
 Solar Magnetic Fields, 300
 Prominences and Flares, 300
 Heating of the Chromosphere and Corona, 303
 The Solar Wind, 304
 Extending Our Reach: Detecting Magnetic Fields: the Zeeman Effect, 305
 10-5 The Solar Cycle, 306
 Cause of the Solar Cycle, 306

Changes in the Solar Cycle, 308 Links between the Solar Cycle and Terrestrial Climate, 310

CHAPTER 11 Measuring the Properties of Stars

11-1 Measuring a Star's Distance, 316 Measuring Distance by Triangulation and Parallax, 317 Extending Our Reach: Measuring the Distance to Sirius, 319 Measuring Distance by the Standard Candle Method, 320 11-2 Measuring the Properties of Stars from their Light, 320 Temperature, 320 Luminosity, 321 The Inverse-Square Law and Measuring a Star's Luminosity, 322 Radius, 323 The Stefan-Boltzmann Law, 324 Extending Our Reach: Measuring the Radius of the Star Sirius, 326 The Magnitude System, 327 11-3 Spectra of Stars, 328 Measuring a Star's Composition, 329 How Temperature Affects a Star's Spectrum, 330 Classification of Stellar Classes, 330 Definition of the Spectral Classes, 332 Measuring a Star's Motion, 333

- 11-4 Binary Stars, 336
 Visual and Spectroscopic Binaries, 337
 Measuring Stellar Masses with Binary Stars, 337
 Eclipsing Binary Stars, 339
- 11-5 Summary of Stellar Properties, 340
- 11-6 The H-R Diagram, 341
 Constructing the H-R Diagram, 341
 Analyzing the H-R Diagram, 341
 Giants and Dwarfs, 343
 The Mass-Luminosity Relation, 344
 Luminosity Classes, 345
 Summary of the H-R Diagram, 346
- 11-7 Variable Stars, 347
- 11-8 Finding a Star's Distance by the Method of Standard Candles, 349

CHAPTER 12 Stellar Evolution

- 12-1 The Evolution of a Star, 356 The Sun's Life Story, 357 The Life Story of a High-Mass Star, 358 The Importance of Gravity, 359
- 12-2 Star Formation, 360
 Interstellar Gas Clouds, 360
 Protostars, 361
 Bipolar Flows from Young Stars, 362
 Stellar Mass Limits, 364
- 12-3 Main-Sequence Stars, 365
 Why a Star's Mass Determines its Core Temperature, 365
 Structure of High-Mass and Low-Mass Stars, 366
 Main-Sequence Lifetime of a Star, 366
- 12-4 Giant Stars, 367
 Leaving the Main Sequence, 367
 Nuclear Fuels Heavier than Hydrogen, 368
 Degeneracy in Low-Mass Stars, 369
- 12-5 Yellow Giants and Pulsating Stars, 370 Why Do Stars Pulsate?, 370 The Period-Luminosity Relation, 373
- 12-6 Death of Stars Like the Sun, 373Ejection of a Low-Mass Star's Outer Layers, 373Planetary Nebulas, 374
- 12-7 Old Age of Massive Stars, 375
 Formation of Heavy Elements: Nucleosynthesis, 375
 Core Collapse of Massive Stars, 376
 Supernova Explosions, 377
 Supernova Remnants, 377
- 12-8 History of Stellar Evolution Theories, 380
- 12-9 Testing Stellar Evolution Theory, 381Extending Our Reach: Measuring the Age of a Star Cluster, 382

CHAPTER 13 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

- 13-1 White Dwarfs, 390
 General Properties, Origin, and Fate, 390
 Structure of White Dwarfs, 392
 Degeneracy and the Chandrasekhar Limit, 392
 White Dwarfs in Binary Systems: Novas and Supernovas of Type I, 393
 13-2 Neutron Stars, 395
 General Properties and Origin, 395
 Pulsars and the Discovery of Neutron Stars, 395
 Emission from Neutron Stars, 398
 X-ray Binary Stars, 401
 18-2 Reach Holes 409
- 13-3 Black Holes, 402
 The Formation of Black Holes, 406
 Observing Black Holes, 406
 Gravitational Waves from Double Compact Stars, 407
 Hawking Radiation, 408

CHAPTER 14 The Milky Way Galaxy

- 14-1 Discovering the Milky Way, 415 Shape of the Milky Way, 415 Size of the Milky Way, 416
- 14-2 Overview of the Milky Way, 419Structure and Contents, 419Mass of the Milky Way and the Number of Stars, 421Age of the Milky Way, 421
- 14-3 Stars of the Milky Way, 421
 Stellar Censuses and the Mass Function, 421
 Two Stellar Populations: Population I and Population II, 422
 Star Clusters, 424
- 14-4 Gas and Dust in the Milky Way, 427
 Interstellar Dust: Obscuration and Reddening, 427
 Interstellar Gas, 430
 Visible Emission from Interstellar Gas, 431
 Radio Wayes from Cold Interstellar Gas, 433
- 14-5 Motion of Stars and Gas in the Milky Way, 433Extending Our Reach: Mapping the Milky Way with Radio Waves, 434
- 14-6 Measuring the Milky Way, 437
 Diameter of the Milky Way, 437
 Mass of the Milky Way, 438
 Extending Our Reach: Measuring the Mass of the Milky Way, 439
 Extending Our Reach: Measuring the Sun's Speed Around the Milky Way, 440
- 14-7 The Galactic Center, 441
- 14-9 History of the Milky Way, 444
 Formation of our Galaxy, 444
 Collapse of the Proto-Milky Way and the Birth of Population I and II
 Stars, 445

Population III, 446 The Future of the Milky Way, 447

CHAPTER 15 Galaxies

15-1 Discovering Galaxies, 454
Early Observations of Galaxies, 455
Types of Galaxies, 456
Differences in the Stellar and Gas Content of Galaxies, 459
The Cause of Galaxy Types, 461
Galaxy Collisions and Mergers, 462
15-2 Measuring Properties of Galaxies, 465
Galaxy Distances, 465
Extending Our Reach: Measuring the Distance of a Galaxy using Cepheid
Variables, 466
The Redshift and the Hubble Law, 467
Measuring the Diameter of a Galaxy, 468
Extending Our Reach: Other Ways to Measure a Galaxy's Distance, 469
Measuring the Mass of a Galaxy, 470
15-3 Dark Matter, 470
15-4 Active Galaxies, 472
Radio Galaxies, 472
Seyfert Galaxies, 473
Quasars, 474
Cause of Activity in Galaxies, 475
Extending Our Reach: Measuring the Diameter of Astronomical Objects
by Using Their Light Variability, 476
15-5 Quasars as Probes of Intergalactic Space, 479
Gravitational Lenses, 479
15-6 Galaxy Clusters, 481
The Local Group, 481
Rich and Poor Galaxy Clusters, 483
Superclusters, 484

CHAPTER 16 Cosmology

16-1 Observations of the Universe, 492
Distribution of Galaxies, 493
Motion of Galaxies, 493
Age of the Universe, 494
Extending Our Reach: Estimating the Age of the Universe, 495
The Cosmic Horizon, 496
The Size of the Universe, 496
Are We at the Center of the Universe?, 496
Olbers' Paradox, 497
The Cosmic Background Radiation, 499
Composition of the Oldest Stars, 501
Conclusions Deduced from the Basic Observations of the Universe, 501
16-2 Evolution of the Universe: Open or Closed?, 503

The Density of the Universe, 504

Extending Our Reach: Measuring the Density of the Universe, 50

- 16-3 The Shape of the Universe, 506
- 16-4 The Origin of the Universe, 508
 Radiation, Matter, and Antimatter in the Early Universe, 509
 History of Matter and Radiation in the Early Universe, 509
 The Formation of Galaxies, 511
- 16-5 The Inflationary Universe, 513
 Extending Our Imagination: New Ideas in Cosmology, 514
 Grand Unified Theories, 514
 Other Universes?, 517

ESSAY 5 Life in the Universe

Life on Earth, E5-0 History of Life on Earth, E5-0 Unity of Living Beings, E5-1 Deductions from the Unity of Life and the Time Line, E5-3 Origin of Life on Earth, E5-4 Origin of Complex Organisms, E5-5 Panspermia, E5-5 Life Elsewhere in the Universe, E5-6 Are We Alone?, E5-6 Arguments for Many Worlds, E5-6 Loners, E5-7 Searching for Life Elsewhere, E5-8 Radio Searches, E5-8 The Gaia Hypothesis, E5-9 The Anthropic Principle, E5-9

Appendix

Powers-of-Ten Notation, A-0 Some Useful Formulas, A-0 Solving Distance, Velocity, Time (D, v, t) Problems, A-1 Table 1 Physical and Astronomical Constants, A-2 Table 2 Conversion Between American and Metric Units, A-2 Table 3 Physical Properties of the Planets, A-3 Table 4 Orbital Properties of the Planets, A-3 Table 5 Satellites of the Solar System, A-4 Table 6 Meteor Showers, A-5 Table 7 The Constellations, A-6 Table 8 The Brightest Stars, A-8 Table 9 The Nearest Stars, A-8 Table 10 Properties of Main-Sequence Stars, A-9 Back of the Envelope I: Temperature of a Star's Core, A-10 Back of the Envelope II: Pulsation Period of a Variable Star, A-11 Star Charts for January through December, A-12

Glossary

Index