TABLE OF CONTENTS

CHAPTER	1 PRINCIPLES OF IMAGE FORMATION	J.M. COWLEY
1.1	Introduction	1
	Electron Scattering and Diffration	
	The Physical Optics Analogy	
	Diffraction Patterns	
	Mathematical Formulation	
1.2	The Abbe Theory of Imaging	7
	Incident Beam Convergence	
	Chromatic Aberration	
	Mathematical Formulation	10
1.3	Inelastic Scattering	12
1.4	STEM and CTEM	13
	STEM Imaging Modes	
	Mathematical Description	
1.5	Thin, Weakly Scattering Specimens	18
	Beam Convergence and Chromatic Aberration	
	Mathematical Formulation	
1.6	Thin, Strongly Scattering Specimens	23
	Mathematical Formulation	
1.7	Thin, Periodic Objects: Crystals	25
	Special Imaging Conditions Mathematical Formulation	
1.0		20
1.8	Thicker Crystals	30
	Lattice Fringes Mathematical Considerations	
1.9		34
1.9	Very Thick Specimens Mathematical Descriptions	34
1 10	Conclusions	36
1.10	• • • • • • • • • • • • • • • • • • • •	30
	cal and General References	
Other	References	
CHAPTER	2 INTRODUCTORY ELECTRON OPTICS	R.H. GEISS
2.1	Introduction	43
2.2	Geometrical Optics	43
	Refraction	
	Cardinal Elements	
	Real and Virtual Images	
	Lens Equations	
	Paraxial Rays	
2.3	Electrostatic Lenses	49
	Refraction	
	Action of Electrostatic Lenses	
	Types of Electrostatic Lenses	

Cont	tents
------	-------

viii

2.4	Magnetic Lenses Action of a Homogeneous Field Action of an Inhomogeneous Field Paraxial Ray Equations Bell Shaped Field Lens Excitation Parameters ω and k ² Cardinal Elements of Magnetic Lenses Objective Lenses Lens Advances Lenses Lens Advances Lenses	53
2.5	Special Magnetic Lenses Prism Optics Magnetic Sectors Electrostatic Sectors	69
2.6	Wein Filter Optics of the Electron Microscope Introduction Electron Gun Condenser Lens System Coherence	72
2.7	Magnification Lens Systems Comparison of CTEM and STEM Optics	77
2.7	Conclusion	• •
Refer		
Reiei		
CHAPTER	R 3 PRINCIPLES OF THIN FILM X-RAY MICROANALYSIS	J.I. GOLDSTEIN
2.1	Today Aradian	83
3.1 3.2	Introduction Quantitative X-ray Analysis	84
3.2	Primary Emitted X-ray Intensities	04
	Quantitative X-ray Analysis Using the Ration Technique and Thin Film Criter Limitations of the Thin Film Criterion Absorption Correction	ion
	Fluorescence Correction	400
3.3	Spatial Resolution	100
	Analytical and Computer Models Measurements of Spatial Resolution	
3.4	Sensitivity Limits	109
3.5	Summary	117
	owledgments	117
	ences	
СНАРТЕ	R 4 QUANTITATIVE X-RAY MICROANALYSIS: INSTURMENT CONSIDERATIONS AND APPLICATIONS TO MATERIALS	
4.1	Introduction	121
4.2	Instrumental Limitations in AEM Based X-ray Microanalysis	121
4.3	Instrumental Artifacts: Systems Background	122
	Fluorescence by Uncollimated Radiation: Remote Sources Fluorescence by Uncollimated Radiation: Local Sources Specimen Contamination Detector Artifacts	
4.4	Optimum Experimental Conditions for X-ray Analysis Detector/Specimen Geometry Detector Collimation Selection of Incident Beam Energy and Electron Source Imaging and Diffraction Conditions During Analysis	130
	Specimen Preparation Artifacts	
4.5	Data Reduction for Quantitative Analysis	137

4.6	Application of Quantitative X-ray Microanalysis: Parameters of Standardless Analysis Absorption Correction	139
4.7	Applications of Standardless Analysis Standardless Analysis Using the Thin-Film Approximation: Fe-1 3Ct Standardless Analysis Using the Absorption Correction: NiA1	149 :-40Ni
4.8	Standardless Analysis in Complex Systems Analysis of Totally Buried Peaks Quantitative Analysis of Precipitated Phases Procedures for Analysis of Radioactive Specimens	155
4.9	Summary	
Ackno	wledgments	
Refere	nces	
Tables		
CHAPTER	5 EDS QUANTITATION AND APPLICATION TO BIG	DLOGY T.A. Hall and B.L. GUPTA
5.1	Introduction	169
5.2	Measurements on Thin or Ultrathin Sections Mounted on T Elemental Ratios	Thin Films 170
	Millimoles of Element Per Unit Volume	
	Millimoles of Element Per kg of Dried Tissue (Continuum Method) Millimoles of Element Per kg Wet Weight (Continuum Method, Fro- Dry-Weight and Aqueous Fractions	zen-Hydrated Sections)
	Conversion to mM of Element Per Litre of Water	
	Absorption Corrections Standards	
5.3	Effects of Contamination Within the Microscope Column	180
5.4	Effects of Beam Damage	181
5.5	Specimen Preparation	182
5.6	Specimens Other Than Sections Mounted on Thin Film	183
Main L	iterature References	
List of	Symbols Used in this Article	
Subscr	ipts	
Refere	nces	
Appen		
A	Derivation of Equation 5.12 for Dry-Weight Determination	
Appen	OIX II Sample Calculations	
	Calculations	
CHAPTER		
	MICROSCOPY	DA VID F. KYSER
6.1	Introduction	199
6.2	Basic Physical Concepts in Monte Carlo Simulation	200
	Electron Scattering	
	Energy Loss Between Elastic Scattering Events	
	Sequence of Calculations Spatial Distribution of Energy Loss and X-ray Production	
6.3	Design, Implementation, and Output of a Monte Carlo Prog	gram 206
	Computer Generation and Utilization of Random Numbers Computational Time and Its Control	
	Condensation and Output of Results Obtained	
6.4	Applications to X-ray Microanalysis	208
	Depth Distribution of X-ray Production	
	Total X-ray Production in Foils Radial Distribution of X-ray Production	
	Electron Trajectory Plotting	

6.5 Ackno Refere	Summary wledgments nces	219
CHAPTER	7 THE BASIC PRINCIPLES OF ELECTRON ENERGY LOSS	
	SPECTROSCOPY	DAVID C. JOY
7.1	What is Electron Energy Loss Spectroscopy?	223
7.2	What is Required?	223
7.3	Describing the Energy Loss Spectrum	225
7.4	The Micro-Analytical Information in the EEL Specimen Region 1 - Around Zero-Loss Region 2 - The Low-Loss Region Region 3 - Higher Energy Losses	227
7.5	Collecting the Energy Loss Spectrum	236
7.6	Recording and Analyzing the Data	239
7.7	The Effects of Specimen Thickness	241
7.7	To Summarize	242
Refere		
Keicie	nices	
CHAPTER	8 ENERGY LOSS SPECTROMETRY FOR BIOLOGICAL	
CIMI ILI	RESEARCH	DALE E. JOHNSON
8.1	Introduction	245
8.2	Characteristics of a Typical Spectrum	245
8.3	Sensitivity of ELS Techniques	247
	Elemental Microanalysis	
	Chemical and Molecular Microanalysis	
8.4	Approaches to the Quantitative Use of ELS	248
	Elemental Microanalysis	
	Chemical Microanalysis Molecular Microanalysis	
	Dielectric Constant Determination	
8.5	Examples of Typical Experimental Results	249
0.5	Experimental Spectra	247
	Low Z Elemental Mapping	
	Molecular Species Mapping	
	Extended Fine Structure (EXAFS)	
8.6	Practical Limitations	253
	Radiation Damage	
	i Mass Loss	
	ii Bond Scission	
	Specimen Thickness i Effect on Background and Peak Heights	
	ii Specimen Mass Thickness Effects in Mapping	
8.7	Summary	257
Refer		231
	c References	
СНАРТЕІ	R 9 ELEMENTAL ANALYSIS USING INNER-SHELL EXCITA MICROANALYTICAL TECHNIQUE FOR MATERIALS CHARACTERIZATION	TIONS: A
^ -	T.A. Lord	
9.1	Introduction	259
9.2	Basic Considerations	260
	Spectrum Dynamic Range	
	Spectral Background	
	Edge Shapes	

Contents

9.3	Progress in Quantitation Analysis Methods Method 1: Efficiency Factors Method 2: Calculated Partial Cross Sections Method 3: Standards Tests of Analysis Methods Stability of Quantitation Methods	265
	Relative Accuracy of Atomic Ratios Absolute Accuracy of Quantitation Future Considerations	
9.4	Elemental Identification Threshold Energy Shape Analysis Elemental Maps	281
9.5	Detection Limits Importance of β Minimum Detectable Limits	285
9.6	Summary	287
Refer	•	
CHAPTER		,
10.1	Introduction	295
10.2	Scattering Kinematics	296
10.3	Inner-Core Excitations	300
10.4	Valence Electron Excitations	302
	Comments	
	owledgments	
Refer	ences	
СНАРТЕ	R 11 STEM IMAGING OF CRYSTALS AND DEFECTS	C.J. HUMPHREYS
11.1	Introduction	305
11.2	Principle of Reciprocity in STEM and CTEM	306
	Reciprocity of Electron Microscopes	
	Reciprocity and the Coherence of the Source and Detector	
	The Inapplicability of Reciprocity for Thick Specimens Qualitative Reciprocity of the Top-Bottom Effect	
	Procedure if Reciprocity is not Applicable	
11.3	Image Recording and Signal/Noise Signal/Noise and Reciprocity	310
	Z-Contrast Applied to Materials	212
11.4	The Optimum Beam Divergences for Imaging Crystal Defects Typical Values of α and β in CTEM and STEM	312
	Effects of Varying eta_{s} on STEM Images Two-Beam Dynamical Theory Interpretation Choice of Optimum eta_{s} Value	
11.5	The Identification of Crystal Defects	317
11.0	Properties of Dislocation Images	
	Properties of Stacking Fault Images	
11.6	The Breakdown of the Column Approximation in STEM The Nature of the Column Approximation	320
	High Resolution STEM Image Calculations Without the Column Approximation	
11.7	Penetration in Crystals Using CTEM and STEM Definition of Penetration Factors Limiting the Penetration of CTEM (W Filament)	323
	Penetration in STEM	
	The Penetration in STEM and CTEM The Top-Bottom Effect	

Contents

11.8	Current Developments in the STEM Imaging of Defects	327
	Post Specimen Lenses	
	On-Line Optical Image Processing	
	Lattice Imaging High Voltage STEM	
	In-Situ Imaging and Analysis	
Ackno	wledgments	
Refere		
	al References	
Cidadi		
CHAPTER	12 BIOLOGICAL SCANNING TRANSMISSION ELECTRON	
	MICROSCOPY	J. WALL
12.1		333
12.2	Quantitative Measurement with the STEM	335
	Length	
	Mass Substrate Noise	
	Heavy Atom Signal	
	Resolution	
	Specimen Modification During Imaging	
12.3	Conclusion	341
Ackno	wledgments	
Refere	ences	
CHAPTER	13 ELECTRON MICROSCOPY OF INDIVIDUAL	
	ATOMS M. ISAACSON, M.OHTSUK	(I and M. UTLAUT
12.1	To do a de a de a de	343
	Introduction	
	Basics - Electron Scattering	344
	Basics - Operation	346
13.3a	Practical Considerations - Electron Optics Probe Formation	347
	Further Stability Requirements	
13.3b	Practical Considerations - Specimen Preparation	352
10.00	Low Noise Support Films	332
13.3c	Practical Considerations - Clean Support Films	355
	Heavy Atom Contamination	
13.3d	Practical Considerations - Organic Contaminants	357
13.4	How to Visualize an Atom	357
13.5	Some Examples of Single Atom Microscopy	360
13.6	Conclusion	366
Ackno	owledgment	
Refer	ences	
CHAPTER	14 MICRODIFFRACTION	J.B. WARREN
14.1	Introduction	369
14.2	Focused Probe Microdiffraction	371
14.3	Focused Aperture Microdiffraction	373
14.4	Rocking Beam Microdiffraction	375 375
14.5	Applications	373
14.6	Summary	383
Refer		303
110101		

CHAPTER	15	CONVERGENT BEAM ELECTRON DIFFRACTION	J.W. STEEDS
15.1	Intro	duction	387
	Devel	opment of Convergent Beam Diffraction	
	The M	dicroscope	
	TEM		
		1 Mode	
		nediate Configurations	
		ts Connected with the Specimen Broading	
		Heating	
		ction of the Specimen	
		mination	
	Gonic	ometry	
15.2	The l	Dimensional Electron Diffraction	395
	-	er Order Laue Zones	
		eters of Holz Rings	
		ing and Origin of Holz Lines	
		lexing igin of Lines	
		te Parameter Determination	
		mination of the Reciprocal Lattice	
		Group Determination	
		arement of Chemical Variations and Strains	
15.3	Crys	tal Point and Space Groups	406
	Use o	f High Symmetry Zone Axes	
		Group Determination	
		mination of the Reciprocal Lattice	
	-	Group Determination	
15.4		edness of a Crystal	412
15.4		nic Arrangements	412
		sities of Holz Reflections nic String Approximation	
15.5		er Printing Techniques	416
15.6	-	tal Potential and Thickness Determination	417
			417
Ackno	_	ments	
Refere	nces		
CHAPTER	16	RADIATION DAMAGE WITH BIOLOGICAL SPECIMEN	S AND ORGANIC
		MATERIALS	ROBERT M. GLAESER
16.1	Intro	duction	423
16.2	Prim	ary Events in Radiation Physics and Radiation Chemistry	425
16.3	Emp	irical Studies of Radiation Damage Effects Measured Under	Conditions
	_	in the Electron Microscope	428
16.4		al-to-Noise Considerations at Safe Electron Exposures	429
16.5	_	tional Processes of Radiation Damage that Occur at Very H	
10.5		chosures	432
Ackno	ulada Balu	reposites	432
Refere	_	ments	
Keiere	nces		
CHAPTER	17	RADIATION EFFECTS IN ANALYSIS OF INORGANIC	SPECIMENS
CIMI IER	1,	BY TEM	L.W. HOBBS
		AF A AMAYA	L.W. 110003
17.1	Intro	duction	437
		tion Damage in Compact Lattices	,
		ron-Atom Inelastic Interaction	
		ron-Beam Heating	
	Charg	e Acquisition by Insulating Specimens	

Xiv

17.3	V als On Displacement	444
	Knock-On Displacement Displacement Energy	
	Momentum Transfer	
17.3	Radiolysis	450
	Electronic Excitations	
	Energy-to-Momentum Conversion	
	Influence of Temperature, Impurity and Radiation Flux	457
	Degradation Kinetics	457
17.5	Radiation-Induced Structural Changes During Analysis	460
	Frenkel Defect Condensation	
	i Planar Aggregates ii Volume Inclusions	
	Ordering and Disordering	
	Segregation and Precipitation	
17.6	Minimizing The Effects of Irradiation	472
	Reducing the Electron Dose	
	Reducing the Temperature	450
	Conclusions	476
Refere	nces	
CHAPTER	18 BARRIERS TO AEM: CONTAMINATION AND ETCHING	j.j. HREN
CIMII I DIK		
18.1	Introduction	481
18.2	Some Definitions	481
18.3	Early Observations of Contamination	482
18.4	The Nature of the Contaminant	483
18.5	Relationship Between Contamination and Etching	484
18.6	Surface Diffusion and Beam Size Effects	486
18.7	Recent Studies of Contamination and Etching	487
18.8	Summary of Phenomenological Observations	490
18.9	The Mechanisms of Contamination	491
	Physiosorption of Hydrocarbon Molecules	
	Surface Diffusion of Hydrocarbon Molecules	_
	Polymerization and Fragmentation of Hydrocarbon Molecules in the Electr Beam Induced Thermal Gradients	ron Beam
	Electrical Gradients in the Surface	
18.10	The Mechanisms of Etching	495
	Physiosorption of a Potentially Reactive Gas	,,,,
	Activation of the Reactive Gas by Electrons	
	Specimen or Contaminant Molecules that Will React with the Excited Phys	siosorbed Gas
10 11	The Reactant Molecules must be Volatile	40=
	Working Solutions: Proven and Potential	497
Refer	Some Effects of Contamination and Etching on AEM	500
Kelen	ences	
CHAPTER	19 MICROANALYSIS BY LATTICE IMAGING	ROBERT SINCLAIR
19.1	Introduction	507
19.2	Theoretical Considerations	508
	Fringe Imaging	-
	Specimen-Related Parameters	
	Microscope Parameters	
10.2	Multi-Beam Imaging	
19.3	Experimental Procedures	515
19.4	Analysis of Fringe Images	520
19.5	Composition Determination	521
19.6	Experimental Examples	524
19.7	Future Directions	527

Contents

19.8	Summary	530
	owledgments	
	rences	
Note	on Key References	
СНАРТЕ	R 20 WEAK-BEAM MICROSCOPY	JOHN B. VANDER SANDE
20.1	Introduction	535
20.2	Theoretical Background	536
	Strong-Beam Images	
	Weak-Beam Images	
20.3	The Practice of Weak-Beam Microscopy	539
	Instrumental Needs	
	Establishing a Weak-Beam Condition	
	i The Ewald Sphere Construction for Strong-Beam Micro ii The Ewald Sphere Construction for Weak-Beam Micros	
	iii Determining the Deviation Parameter, s	сору
20.4	Applications of Weak-Beam Microscopy	543
20.4	Separation of Partial Dislocations	343
	Dense Defect Arrays: Dislocation Dipoles, Dislocation Tan	gles, and Dislocation Cell Walls
	Precipitation on Dislocation Lines: Second Phase Particle I	nterfaces
	Comments	
Ackn	owledgments	
Refer	rences	
CHAPTER		
	IMAGES	PETER HUMBLE
21.1	Introduction	551
21.2	Theory and Computational Considerations	552
21.3	Experimental Method and the Collection of Inform	
21.4	Examples of the Use of Simulated Images in the An	
21.5		571
	The Context of this Technique in AEM	5/1
Refer		
мајог	r References	
СНАРТЕР	R 22 THE STRATEGY OF ANALYSIS	RON ANDERSON and J.N. RAMSEY
22.1	Introduction	575
22.2	Where to Begin?	575
22.3	Specimen Type Strategy	576
22.4	Identification-Solving Unknown Phases and Structu	
22.4	<u> </u>	186 sin AEM input 585
22.5	AEM and Complimentary Technique Examples Al-Cu Thin Film Corrosion	380
	Al-Cr Films and Al-Hf Films	
	Organic Residue on Fired Thick Film Conductors	
	Premature Collector - Base Breakdown	
Ackno	owledgments	
Refer	ences	