Inhaltsverzeichnis

1.	Alkane und Cycloalkane	1	1.10.	Durch Decarbonylierung	
1.1.	Durch Auftrennung von Kohlen-			(H.D. Hahn)	
	wasserstoffgemischen (S. Warwel) .	2		Radikal-initiierte	
1.1.1.	Einleitung	2	1.10.2.	Photochemische	27
1.1.2.	Auftrennung von Erdgasen	2	1.10.3.	Thermische	27
1.1.3.	Auftrennung von Erdöl	3	1.10.4.	Katalytische	27
1.1.4.	Auftrennung durch Extraktiv-		1.11.	Durch Thermolyse oder Photolyse	
115	Destillation	7		von Diorganoperoxiden bzw.	27
1.1.5.	Auftrennung durch Permeation	7		Organohydroperoxiden (V. Falk)	27
1.2.	Durch Aufbaureaktionen			von Hydroperoxiden	28
	(B. Cornils, J. Weber)	7		von Dialkylperoxiden	28
1.2.1.	Fischer-Tropsch-Synthese	7		von Diacylperoxiden	28
1.2.2.	Oligomerisation von Alkenen	12		von Acylhydroperoxiden	29
1.2.3.	Alkylierung von Alkanen mit	12	1.11.5.	von Perestern	29
1.2.3.	Alkenen	13	1.11.6.	von Peroxiden von metallorganischen	
1.2.4.	Wurtz-Synthese	13		Verbindungen	29
1.2.5.	Kolbe-Synthese	14	1.11.7.	durch Thermolyse bzw. Photolyse	
1.3.	Durch Reduktion ungesättigter			von cyclischen Peroxiden	29
1.3.	Kohlenwasserstoffe oder Aromaten		1.12.	Durch Isomerisierung von Kohlen-	
	(CD. Frohning, G. Horn)	16		wasserstoffen (J. Grolig,	
1.3.1.	Katalytische Reduktion	16		W. Swodenk)	30
1.3.1.	Nichtkatalytische Reduktion	17	1.12.1.	Reaktionsbedingungen und	
	•	1 /			30
1.4.	Durch Reduktion sauerstoffhaltiger	1.7	1.12.2.	Isomerisierung von Alkanen	30
	Verbindungen (V. Falk, J. Weber).	17	1.12.3.		30
1.4.1.	von Hydroxy-Verbindungen	17	1.13.	Durch Dealkylierung von Kohlen-	
1.4.2.	von Carbonyl-Verbindungen	18		wasserstoffen (J. Grolig,	
1.4.3.	von Carbonsäuren und deren	20		W. Swodenk)	32
	Derivaten	20	1.14.	Weitere Methoden (J. Grolig,	
1.5.	Durch Reduktion von Halogen-			W. Swodenk)	32
	Verbindungen (CD. Frohning,	20	1.14.1.		
	G. Horn)	20		von Alkenen	32
1.6.	Durch Abbau stickstoffhaltiger		1.14.2.		
	Verbindungen (E. Zilly)	21		Cyclisierung von Alkanen	
1.6.1.	aus Hydrazonen	21		(Dehydrocyclisierung)	33
1.6.2.	aus Aminen	21		(= only aroof oneset ang)	
1.6.3.	aus Carbonsaurenitrilen	22	2.	Alkene und Cycloalkene	35
1.6.4.		22		•	55
1.7.	Durch Abbau schwefelhaltiger		2.1.	Durch Wasserstoff-Abspaltung (H. Weber)	36
1.7.	Verbindungen (E. Zilly)	23			30
	· · · · · · · · · · · · · · · · · · ·	20	2.2.	Durch Aufbaureaktion (Fischer-	
1.8.	Durch Solvolyse oder Thermolyse			Tropsch-Synthese) (CD. Frohning,	22
	von metallorganischen Verbindungen (H. Fricke)	24		G. Horn)	37
		∠ ¬	2.3.	Durch Abspaltung von Wasser aus	_
1.9.	Durch Decarboxylierung	24		Alkoholen (H. Knözinger)	37
	(W. Bernhagen, B. Cornils)	24	2.3.1.	in flüssiger Phase	37
1.9.1.	Thermische	24	2.3.2.	in der Gasphase	38
1.9.2.	Oxidative	25	2.3.3.	in der Gasphase in Gegenwart hetero-	
1.9.3.	Elektrochemische (Kolbe-Reaktion)	26		gener Katalysatoren	39
1.9.4.	Photochemische	26		•	

2.4.	Durch Abspaltung von Alkohol aus Äthern (H. Knözinger)	40	2.22.	Durch Carbonylolefinierung nach Wittig (R. Zimmermann,
2.5.	Durch Abspaltung von Halogenwasserstoff aus Halogen-Verbindungen (U. Kraatz)	40	2.22.1. 2.22.2.	· · · = ·
2.6.	Durch Abspaltung von Halogen aus Dihalogeniden (U. Kraatz)	43	2.22.3. 2.22.4.	Beeinflussung des Reaktionsablaufes 68 Stereoselektive Reaktionen 69
2.7.	Durch Abspaltung von Kohlen- monoxid und Wasserstoff aus Aldehyden (J. Falbe/H.D. Hahn)	45	2.22.5. 2.22.6. 2.22.7.	PO-aktivierte Olefinierung 70
2.8.	Durch Pyrolyse von Carbonsäure- oder Kohlensäureestern (W. Payer)	46	2.22.8. 2.22.9.	Cycloalkene
2.8.1. 2.8.2.	von Carbonsaureestern	46 48	2.23.	Durch Dimerisierung bifunktioneller Verbindungen (E. Zilly) 72
2.9.	Durch Decarboxylierung ungesättigter Carbonsäure-Derivate (W. Bernhagen)	48		von Diazo-Verbindungen
2.9.1.	Ester mit ungesättigtem Säureanteil	48	2.23.4. 2.23.5.	
2.9.2.	Ester mit ungesättigter Alkohol-		2.23.6.	
	Komponente (Carbonsäure-alkenylester)	48	2.24.	Durch Kondensation von Methylen- Verbindungen mit bifunktionellen
2.10.	Durch Decarboxylierung von Lactonen (H. Wamhoff)	48		Verbindungen (E. Zilly) 74
2.11.	Durch Pyrolyse von Stickstoff- Verbindungen (E. Zilly)	50	2.25.	Durch Diels-Alder-Reaktion (H. Wollweber)
2.12.	Durch Pyrolyse von Schwefel- Verbindungen (E. Zilly)	52	2.25.1. 2.25.2. 2.25.3.	Mechanismus
2.13.	Durch Pyrolyse von Phosphonium- Verbindungen (V. Falk)	54	2.25.4. 2.25.5.	Regiochemie
2.14.	Durch Isomerisierung anderer		2.26.	Durch Wurtz-Synthese (H. Fricke) 101
	Alkene unter Erhaltung des Kohlen- stoffgerüstes (H. Weber)	56	2.27.	Durch Oligomerisation von Alkenen (H. Weber)
2.15.	Durch Umlagerung cyclischer ungesättigter Kohlenwasserstoffe (J. Grolig, W. Swodenk)	58	2.28.	Durch partielle Reduktion von Alkinen (CD. Frohning, G. Horn) 103
2.16.	Durch Spaltung von Kohlenwasser-	30	2.29.	Durch partielle Reduktion von Polyenen (CD. Frohning, G. Horn) 106
	stoffen unter Fragmentierung des Kohlenstoffgerüstes (J. Grolig, W. Swodenk)	59	2.30.	Durch partielle Reduktion von Aromaten (CD. Frohning, G. Horn) 107
2.17.	Durch Ringsprengung von Cyclo- alkanen und Cycloalkenen (H. Weber)	61	2.31.	Aus substituierten Alkenen durch Ersatz des Substituenten durch Wasserstoff (G. Horn) 109
2.18.	Durch Olefinmetathese aus anderen Alkenen (H. Weber)		2.31.1. 2.31.2.	aus Hydroxy- und Alkoxy-alkenen 109
2.19.	Durch Fragmentierung von Hydroxy-, Amino- und Halogen-		2.31.3.	aus ungesättigten Carbonyl- Verbindungen 109
	carbonsäuren (U. Kraatz)	63	3.	Diene und Polyene 111
2.20.	Durch Decarboxylierung von Carbonsäuren (W. Bernhagen, B. Cornils)	63	3.1.	Durch Dehydrierung von Alkanen oder Alkenen (J. Grolig, W. Swodenk)
2.21.	Durch Friedel-Crafts-Synthese (E. Zilly)	65	3.1.1.	Unter Abspaltung von elementarem
2.21.1.			3.1.2. 3.1.3.	Wasserstoff
	Alkylierung mit Dienenaus Dienen und Alkenen	66	J.1.J.	von 1,3-Butadien und Isopren aus den Dehvdrierströmen

5.4.2.4.	Additionen an die C=O-Doppel-			Einleitung	
	bindung	195	5.11.2.	Katalysatoren	222
5.4.2.5.	Reaktionen mit anderen photo-			Aromatische Substrate	
	angeregten Molekülen	195	5.11.4.	Alkylierungsmittel	222
5.4.3.	durch katalytische Umsetzungen	107		Reaktionsbedingungen	
	(Reppe-Verfahren) (FJ. Müller)	196		Umlagerungen	
5.5.	Aus Alkenen (E. Zilly)	198		Produkte	224
5.5.1.	Thermische Aromatisierung		5.12.	Durch Dealkylierung von	~~.
	niederer Alkene			Alkylaromaten (H.W.G. Heijnen)	
5.5.2.	Katalytische Aromatisierung			Hydrodealkylierung	225
	Niederer Alkene		5.12.2.	Dealkylierung in Gegenwart von	226
	Flüssiger und verflüssigter Alkene .		c 12 2	Wasserdampf	
5.5.2.3.	von Cycloalkenen	203	5.12.3.	Disproportionierung Oxidative Dealkylierung	221
5.6.	Aus ungesättigten Kohlenwasser-		3.12.4.	Oxidative Dealkynerung	220
	stoffen durch Diels-Alder-Reaktion	20.5	6.	Heteroaromaten	229
	(DAR) (H. Wollweber)	205			22)
5.6.1.	aus nichtaromatischen Verbindun-	205	6.1.	Einleitung und Übersicht (M.J. Cook)	220
5.60	gen	205			
5.6.2.	aus anderen aromatischen	207	6.1.1.	Heterocyclische Verbindungen	230
5.6.3.	Verbindungen	207	6.1.2.	Die Aromatizität von fünf- und	220
5.0.5.	aus ungesättigten Kohlenwasser- stoffen durch andere Cyclo-		6.1.3.	sechsgliedrigen Heteroaromaten	230
	additionen	210	0.1.5.	Grundlagen der Synthese von Heteroaromaten	231
		210	6.1.4.	Reaktivität des Ringes in elektro-	231
5.7.	Durch Abspaltreaktionen aus	211	0.1.4.	philen Substitutionsreaktionen	234
	alicyclischen Verbindungen		6.1.5.	Reaktivität des Ringes gegenüber	
5.7.1.	durch Dehydrierung (W. Keim)		0.1.01	Nukleophilen	236
	zu reinen Aromaten	211	6.1.6.	Die Reaktivität des Ringes gegen-	
3.7.1.2.	zu Aromaten mit funktionellen Gruppen	212		über freien Radikalen	237
5. 7.2.	durch Dehydrohalogenierung	212	6.1.7.	Heteroaromatische Tautomerie	
3.7.2.	(W. Keim)	212	6.1.8.	Übersichten	238
5.7.3.	durch Wasser-Abspaltung (W. Keim)		6.2.	N-Heteroaromaten	238
5.7.4.	durch Decarbonylierung aromati-		6.2.1.	fünfgliedrige	
	scher Aldehyde und Ketone			Pyrrole (A. Gossauer)	
	(J. Falbe, A. Mullen)			Pyrazole (A. Mullen)	
5.7.4.1.	Aromatischer Aldehyde	213		Imidazole (M.R. Grimmett)	
5.7.4.2.	Aromatischer Ketone	214		Triazole (T.L. Gilchrist)	
5.8.	Durch cyclisierende Kondensation			Tetrazole (F.R. Benson)	
	von Aldehyden und Ketonen	214		Indole (R.J. Sundberg) Carbazol (J.A. Schield)	
501	(W. Payer)			Porphyrine, Gallenfarbstoffe,	24
5.8.1.	Aldol-Kondensation	214	0.2.1.0.	Chlorophylle und Corrine	
5.8.2.	Michael-Addition und anschlie- ßende Aldolkondensation	216		(JH. Fuhrhop)	248
5.8.3.	Knoevenagel-Kondensation		6.2.1.9.	Benzimidazole (A. Widdig)	
5.8.4.	Alkylierung und Dehydratisierung		6.2.2.	sechsgliedrige	
		21,	6.2.2.1.	Pyridine (T.D. Bailey)	
5.9.	Durch Isomerisierung alicyclischer	210		Pyridazine (M. Tisler, B. Stanovnik).	254
	Verbindungen (J. Falbe, B. Cornils)	218	6.2.2.3.	Pyrimidine, Pyrazine, Triazine,	
5.9.1.	Intramolekulare Dehydrierung/			Tetrazine (D.J. Brown)	
	Hydrierung von Cyclohexan-	210		. Pyrimidine	
5.9.2.	Derivaten			Pyrazine	
5.9.2. 5.9.3.	Gerüstisomere Umlagerung			1.1.2.4 Trianing	
5.9.4.	Sonstige Reaktionen	220		1,2,4-Triazine	
	<u> </u>			. 1,3,5-Triazine	
5.10.	Durch Ringerweiterung oder -verengung von carbocyclischen			1,2,3,4-1etrazine	
	Verbindungen (H. Fricke)	220		3.1,2,4,5-Tetrazine	
5 1 1				Chinoline und Isochinoline	
5.11.	Alkyl-arene durch Alkylierung von Arenen (A. Mullen)	221		(E. Reimann)	261

6.2.2.5. Phenanthridine (B.R.T. Keene) . . . 264

6.2.2.6. Chinoxaline (W.L.F. Armarego) . . . 265

6.3.1.1. Furane (C.J.M. Stirling) 269

6.3.1.2. Benzo[b]furane (R. Royer) 271

Pyrane, Chromene, Xanthene

6.3.2.2. Chromene 278

6.3.2.3. Xanthene 279

Benzo- und Dibenzothiophene

6.4.3.2. 1,2-Dithiolium-Salze bzw. -Betaine . 290

6.3.2.1. Pyrane, Dihydropyrane und Tetra-

6.3.1.3. Benzolclfurane (Isobenzofurane)

6.3.1.4. Diphenylenoxide (N.E. Stjern-

Sauerstoff-haltige Heteroaromaten . 269

(J. Falbe) 273

ström) 274

(J. Falbe, B. Cornils) 275

hydropyrane 275

Schwefel-haltige Heteroaromaten . 279

Thiophen (H. Wynberg) 279

(B. Iddon) 282

Dithiole (H. Behringer) 286

. 266

. 268

6.2.2.7. Purine (H. Feichtinger)

6.3.

6.3.1.

6.3.2.

6.4.

6.4.1.

6.4.2.

6.4.3.

6.2.2.8. Pteridine (H. Feichtinger)