Inhaltsverzeichnis

1	Die Stoffmenge	,
1.1	Stoffmengenbezogene Größen und ihre Verknüpfungen	1
1.2	Die Bestimmung der Avogadro'schen Konstanten	5
2	Gase	8
2.1	Die Gesetze eines idealen Gases	8
2.2	Gemische idealer Gase	13
2.3	Grundlagen der kinetischen Gastheorie	15
2.4	Reale Gase	20
2.5	Die manometrische Messung des Gasstoffwechsels	24
3	Lösungen	31
3.1	Das Phasendiagramm des Wassers	31
3.2	Das Raoult'sche und das Henry'sche Gesetz	33
3.3	Gefrierpunkterniedrigung und Siedepunkterhöhung einer Lösung	38
3.4	Die Osmose und der osmotische Druck	40
3.5	Aktivität und Ionenstärke	43
4	Das chemische Gleichgewicht	47
4.1	Gleichgewichte in homogener Phase	47
4.2	Löslichkeitsgleichgewichte von Salzen	51
5	Protonentransfer-Reaktionen	57
5.1	Protolyse von Säuren, Basen und Salzen	57
5.2	Anwendungen: Titrationen, Indikatoren und Puffer	62
5.3	Protonentransfer bei Aminosäuren und Proteinen	67
5	Der Erste Hauptsatz der Thermodynamik	73
5.1	Einige Definitionen und Grundbegriffe	73
5.2	Isotherme Expansion und Kompression eines idealen Gases	
	Reversibilität und Irreversibilität	77
5.3	Die Enthalpie	84

6.4	Die Wärmekapazität	89
6.5	Kalorimetrie	92
6.6	Adiabatische Expansion und Kompression eines idealen Gases \dots	94
7	Der Zweite Hauptsatz der Thermodynamik	97
7.1	Der Carnot'sche Kreisprozeß	97
7.2	Die Entropie	100
7.3	Entropieänderungen bei reversiblen und irreversiblen Vorgängen	102
7.4	Entropie und Lebensvorgänge	107
8	Der Dritte Hauptsatz der Thermodynamik	111
8.1	Der Zusammenhang zwischen Temperatur und Entropie	111
8.2	Absolute Entropie und Reaktionsentropie	113
9	Die Thermodynamik des Gleichgewichtszustands	
9.1	Die Gibbs-Energie	118
9.2	Die Thermodynamik des chemischen Gleichgewichts	123
9.3	Die Temperaturabhängigkeit der Gleichgewichtskonstanten	128
9.4	Die Thermodynamik des osmotischen Gleichgewichts	130
9.5	Die energetische Kopplung bei biochemischen Reaktionen \ldots	133
0	Allgemeine Reaktionskinetik	
0.1	Grundlegende Zusammenhänge	136
0.2	Die kinetischen Gleichungen	139
10.3	Die Aktivierungsenergie	148
11	Die Kinetik enzymkatalysierter Reaktionen	
11.1	Die photometrische Messung in der Enzymkinetik	151
11.2	Der theoretische Ansatz in der Enzymkinetik	155
11.3	Lineare Transformationen der Michaelis-Menten-Gleichung	158
11.4	Die Bestimmung von $\mathbf{K}_{\mathbf{M}}$ und \mathbf{v}_{\max}	159
11.5	Enzym-Hemmungen	161
11.6	Die Bestimmung der Inhibitor-Konstanten	168
12	Potentialbildende chemische Vorgänge und Elektronentransfer	171
12.1	Elektrochemische Zellen	171
12.2	Das Standardpotential und die elektrochemische Spannungsreihe \dots	178
12.3	Energetik des Elektronentransfers	181
12.4	Die Nernst'sche Gleichung	184
12.5	Die Silberchlorid- und die Kalomel-Elektrode	189
12.6	Die Glaselektrode und die Einstab-Meßkette	192
12.7	Potentiometrische Bestimmungsmethoden	195

12.8	Biologischer Elektronentransfer	197
13	Die Elektrolyse	201
13.1	Zersetzungs- und Überspannung	201
13.2	Elektrolytische Reaktionen an den Elektroden	203
13.3	Die Faraday-Gesetze	206
13.4	Die Elementarladung und die Faraday-Konstante	208
14	Die Leitfähigkeit von Elektrolyt-Lösungen	211
14.1	Theoretische Grundlagen	211
14.2	Die Messung der Ionenbeweglichkeit	
	und der spezifischen Leitfähigkeit	214
14.3	Die Leitfähigkeit starker und schwacher Elektrolyte	217
14.4	Die konduktometrische Bestimmung des Löslichkeitsprodukts	222
15	Transportvorgänge durch Biomembranen	224
15.1	Passiver und aktiver Transport	224
15.2	Das Donnan-Gleichgewicht	228
15.3	Ionentransportvorgänge durch Nervenzellmembranen	231
15.4	Protonengradienten über Biomembranen und ATP-Bildung	235
Anhane	5	239
A 1	Mathematische Hinweise	239
A 2	Physikalische Konstanten und Größen	247
A 3	Physikalisch-chemisches Zahlenmaterial	249
A 4	Biographische und wissenschaftshistorische Angaben	256
Litera	atur	262
Quelle	enangaben	265
Sachve	erzeichnis	266