Contents

List of Figures

	List of Figures	ix
	List of Tables	xii
	Preface	xiii
	Acknowledgments	xvi
P A]	RT 1	
nt	roduction	1
1	Enabling Innovations in Education and Systematizing their Impact ANTHONY E. KELLY, JOHN Y. BAEK, RICHARD A. LESH, AND BRENDA BANNAN-RITLAND	3
PAI	RT 2	
De	sign Research and its Argumentative Grammar	19
2	The "Compleat" Design Experiment: From Soup to Nuts	21
	JAMES MIDDLETON, STEPHEN GORARD, CHRIS TAYLOR, AND BRENDA BANNAN-RITLAND	
3	Instrumentation and Innovation in Design Experiments:	
	Taking the Turn Towards Efficiency	4 7
	DANIEL L. SCHWARTZ, JAMMIE CHANG, AND LEE MARTIN	
4	Experimenting to Support and Understand Learning Processes	68
	PAUL COBB AND KOENO GRAVEMEIJER	
5	Engineering and Design Research: Intersections for	
	Education Research and Design	96
	MARGRET A. HJALMARSON AND RICHARD A. LESH	
6	Variation Theory: An Organizing Principle to Guide	
	Design Research in Education	111
	MONA HOLMQVIST, LAILA GUSTAVSSON, AND ANNA WERNBERG	

vi	Contents	
7	Multitiered Design Experiments in Mathematics, Science, and Technology Education RICHARD A. LESH, ANTHONY E. KELLY, AND CAROLINE YOON	131
8	Balancing Product Design and Theoretical Insights LISSER R. EJERSBO, ROBIN ENGELHARDT, LISBETH FRØLUNDE, THORKILD HANGHØJ, RIKKE MAGNUSSEN, AND MORTEN MISFELDT	149
	RT 3 odeling Student Learning During Design Research	165
9	Research Methods for Alternative Approaches to Transfer: Implications for Design Experiments JOANNE LOBATO	167
10	A Methodology for Documenting Collective Activity CHRIS RASMUSSEN AND MICHELLE STEPHAN	195
	RT 4 odeling Teacher Learning Using Design Research	217
11	Developing Design Studies in Mathematics Education Professional Development: Studying Teachers' Interpretive Systems JUDITH ZAWOJEWSKI, MICHELLE CHAMBERLIN, MARGRET A. HJALMARSON, AND CATHERINE LEWIS	219
12	Teacher Design Research: An Emerging Paradigm for Teachers' Professional Development BRENDA BANNAN-RITLAND	246
	RT 5 odeling Stakeholder Commitments Using Design Research	263
13	Toward Assessment of Teachers' Receptivity to Change in Singapore: A Case Study JEANNE WOLF, MANI LE VASAN	265
14	A Design Research Approach to Investigating Educational Decision Making S. DAVID BRAZER AND L. ROBIN KELLER	284
	RT 6 flecting on Design Research at the Project Level	297
15	Investigating the Act of Design in Design Research: The Road Taken BRENDA BANNAN-RITLAND AND JOHN Y. BAEK	299

		Contents	vii
16	Illuminating the Braids of Change in a Web-Supported Community: A Design Experiment by Another Name SASHA A. BARAB, EUN-OK BAEK, STEVE SCHATZ, REBECCA SCHECKLER, AND JULIE MOORE		320
17	Design Methods for Educational Media to Communicate: When We Cannot Predict What Will Work, Find What Will Not Work	:k	353
	RT 7 flecting on Design Research at the Program Level		367
18	Getting to Scale with Innovations that Deeply Restructure		2
	How Students Come to Know Mathematics JEREMY ROSCHELLE, DEBORAH TATAR, AND JIM KAPUT		369
	JEKEMI KOSCHELLE, DEBOKAH TATAK, AND JIM KAPUT		
19	Music Training and Mathematics Achievement: A Multiyear Iterative Project Designed to Enhance Students' Learning MICHAEL E. MARTINEZ, MATTHEW PETERSON, MARK BODNER, ANDREW COULSON, SYDNI VUONG, WENJIE HU, TINA EARL, AND GORDON L. SHAW		396
20	Design Experiments and Curriculum Research DOUGLAS H. CLEMENTS		410
21	The Design Principles Database as a Means for Promoting Design-Based Research		423
	RT 8 tending Design Research Methodologically		439
22	Design Research and the Study of Change: Conceptualizing Individual Growth in Designed Settings FINBARR C. SLOANE AND ANTHONY E. KELLY		441
23	Longitudinal Analysis and Interrupted Time Series Designs: Opportunities for the Practice of Design Research FINBARR C. SLOANE, BRANDON HELDING, AND ANTHONY E. KELLY		449
24	Multilevel Models in Design Research: A Case from Mathematics Education FINBARR C. SLOANE		459
25	Modeling Complexity in Mathematics Education DONALD SAARI		4 77
26	Design-Based Research in Physics Education: A Review RICHARD R. HAKE		493

VIII	Contents	
PART 9 Tracking the Diffusion of Design Research 509		509
27	Design Research and the Diffusion of Innovations R. SAM LARSON AND JAMES W. DEARING	511
	Index	535

Figures

2.1	General Model of Design Research	22
2.2	Basic Model of Scientific Research in Education	28
2.3	Three "New" Phases in the Design Experiment—Phases 3 to 5 of the	
	Compleat Research Process	30
2.4	The Compleat Design Cycle	32
2.5	Standard Fractions and Division Problems Given During	
	Baseline Interviews	36
3.1	Trajectories of Knowledge Growth	48
3.2	Students Innovate a Reliability Index to Measure Pitching Machines	55
3.3	Taking the Turn in Learning and Science	56
3.4	Design of Assessment Experiment and Results	58
4.1	Data on the Life Spans of Two Different Brands of Batteries in the First	
	Computer Tool	72
4.2	The Battery Data in the First Computer with the Options of	
	Bounding an Interval and Partitioning at a Data Value Shown	79
4.3	Data on the T-Cell Counts of Two Groups of AIDS Patients	
	in the Second Computer Tool	79
4.4	The AIDS Data Partitioned at the T-Cell Count of 550	80
4.5	The AIDS Data Organized into Four Equal Groups with Data Hidden	80
4.6	Data on the Salaries of Women by Years of Education in the	
	Third Computer Tool	81
4.7	Salary and Education Data for Women Organized the	
	Grids Option	82
4.8	Salary and Education Data for Women Organized the	
	Grids Option Four-Equal-Groups Option	82
6.1	Geometric Shapes Suggested by Pre-existing Knowledge	113
6.2	Selection Process Used to Make Up the Groups of Students who	
	Participated in the Learning Study Cycles	116
8.1	The "Osmotic" Model, Which Represents our Current	
	Understanding of How to Balance Artifact and Theory Generation in a	
	Design Research Paradigm	150
8.2	The Ethnographic Approach Taken in the Mathematical	
	Writing Project	154
8.3	The Product Design Approach Taken in the Homicide Project	156
8.4	The Methodological Path Taken in the Teachers' In-Service	
	Education Project Using Open Problem Solving in Mathematics	159
9.1	Relation of Similarity Inferred from the Work of One Student	171
9.2	Transfer Tasks Used in Interviews	177

9.3	Author's Representation of Terry's Method for Decreasing	
	the Length of the Base of the Wheelchair Ramp	179
9.4	Terry's Drawing for Finding the Amount by which he	
	Needs to Extend the Height of the Wheelchair Ramp in Order to Keep	
	its Steepness the Same when the Length is Extended by 1 Foot	180
9.5	Focusing Phenomena and their Relationships to One Another and to	
	Students' Generalizations	185
10.1	Toulmin's Model of Argumentation	197
10.2	Two Methods of Counting as Students Paced the Length of a Rug	202
10.3	The Core of the Collective Emerging Argumentation	203
10.4	The Teacher's Graph of the Fate of the Rabbit Population	• • •
	Starting with Ten Rabbits	206
10.5	The Teacher's Sketch of the Relation Between the Slopes on	
	Two Solution Curves	206
10.6	John's Argument for the Invariance of Slopes	208
10.7	A Shift From Conclusion to Data	209
10.8	The Structure of the Methodology	211
11.1	Design Study Situated in Context	222
11.2	Illustration of the Products Designed by the Different	
	Constituencies	230
11.3	Different Options Available for Collecting and Analyzing Data	231
13.1	Receptivity to Change Framework	269
15.1	Questions and Methods for Design Research by ILDF Phase	302
15.2	Progressive Formulation of Conjectures to Local Evaluation	• • • •
	Questions for the LAO Project	308
16.1	The Inquiry Learning Forum (ILF) Home Screen	326
16.2	Current Iteration of a Specific Inquiry Learning Forum Classroom	327
16.3	Timeline of Design Episodes in the Inquiry Learning Forum	330
16.4	Iteration of an Inquiry Learning Forum (ILF) Inquiry Circle	333
16.5	Current Iteration of an Inquiry Learning Forum (ILF)	226
	Inquiry Circle (Water Ecology)	338
16.6	Inquiry Learning Forum (ILF) Number of Postings Per Month from its	244
	Release in February 2000 through December 2001	344
17.1	A Still from the Educational Research Visualization Video	2.55
	Showing a Student Using Multiple Methods to Explain her Work	357
17.2	Graphic Showing the "New Groups Below" Method	358
18.1	Three Perspectives of the Restructuring Knowing Framework	372
18.2	Framework for Classroom Learning	378
18.3	Spider Diagram of SimCalc's Coverage of Four Concerns	391
19.1	Frequencies of the Students' Game Scores Showing an	40.4
	Impasse at 130 Points	404
19.2	Accuracy in Pre- and Post-Tests of the Place Value Spatial Games	405
19.3	Accuracy in Pre- and Post-Tests of Place Value Language	40.0
	Integration	405
21.1	Schematic Representation of the Structure of The Design	40.
	Principles Database	426
21.2	Pragmatic Principle in the Design Principles Database	429
21.3	Interface of the Peer Evaluation Activity in the Collaborative	421
	e-Learning Structures Environment	431

Tables

3.1	Percentage of Students who Successfully Explained why a	
	Formula Uses a Given Operation	57
6.1	Comparisons of the English and Swedish Forms of the	
	Present Tense of the Verb "To Be"	118
6.2	Examples of Students' Sentences Containing "Am", "Are,"	
	and "Is" in English Research Lesson Two	120
6.3	The Lived Object of Learning Expressed as Percentages of Correct	
	Answers in English Research Lessons One, Two, and Three	123
6.4	The Enacted Object of Learning for the Three English	
	Research Lessons	124
6.5	The Percentage of Correct Answers in the Spelling Tests in	
	Swedish Research Lessons Four, Five, and Six	126
9.1	Data Collected by Students Showing the Enlargement	
	Factor of an Overhead Projector Placed at Varying Distances	
	from the Wall	185
10.1	A Page of the Mathematics Ideas Charts	200
11.1	An Initial Planning Chart for a Design Study	235
14.1	Three Foci for Multiobjective Multistakeholder Educational Decision	
	Making in Research and Practice	289
14.2	Possible Outcomes from Retention Policy Choices	291
16.1	Comparing Psychological Experimentation and Design-	
	Based Research Methods	321
18.1	SimCalc's Approach to Uniting Three Perspectives	373
24.1	Working Hypotheses and their Assumed Conditions:	
	Mathematical Performance, Beliefs About Mathematics, and	
	Sociomathematical Norms (Within Groups)	467
24.2	Framework for Interpreting Individual and Social Activity in	
	Learning	467
25.1	Improved Performance	484
25.2	Overall Decline in Performance	485
27.1	Comparison of the Main Attributes of Experimental Demonstrations	
	and Exemplary Demonstrations	520