Contents

Foreword ix
 Jim Gray, Microsoft, Inc.
Preface xxi

PART ONE
BACKGROUND AND MOTIVATION

Chapter 1 What Is It All About? 3
 1.1 Goal and Overview 3
 1.2 Application Examples 4
 1.2.1 Online Transaction Processing: Debit/Credit Example 5
 1.2.2 Electronic Commerce Example 9
 1.2.3 Workflow Management: Travel Planning Example 12
 1.3 System Paradigms 16
 1.3.1 Three-Tier and Two-Tier Architectures 16
 1.3.2 Federations of Servers 20
 1.4 Virtues of the Transaction Concept 22
 1.4.1 Transaction Properties and the Transaction Programming Interface 22
 1.4.2 Requirements on Transactional Servers 26
 1.5 Concepts and Architecture of Database Servers 27
 1.5.1 Architectural Layers of Database Systems 27
 1.5.2 How Data Is Stored 30
 1.5.3 How Data Is Accessed 32
 1.5.4 How Queries and Updates Are Executed 35
 1.6 Lessons Learned 37

Exercises 38
Bibliographic Notes 38
Chapter 2 Computational Models

2.1 Goal and Overview
2.2 Ingredients
2.3 The Page Model
2.4 The Object Model
2.5 Road Map of the Book
2.6 Lessons Learned

Exercises
Bibliographic Notes

PART TWO
CONCURRENCY CONTROL

Chapter 3 Concurrency Control: Notions of Correctness for the Page Model

3.1 Goal and Overview
3.2 Canonical Concurrency Problems
3.3 Syntax of Histories and Schedules
3.4 Correctness of Histories and Schedules
3.5 Herbrand Semantics of Schedules
3.6 Final State Serializability
3.7 View Serializability

3.7.1 View Equivalence and the Resulting Correctness Criterion
3.7.2 On the Complexity of Testing View Serializability

3.8 Conflict Serializability

3.8.1 Conflict Relations
3.8.2 Class CSR
3.8.3 Conflicts and Commutativity
3.8.4 Restrictions of Conflict Serializability

3.9 Commit Serializability

3.10 An Alternative Correctness Criterion: Interleaving Specifications

3.11 Lessons Learned

Exercises
Bibliographic Notes
<table>
<thead>
<tr>
<th>Chapter 4 Concurrency Control Algorithms</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Goal and Overview</td>
<td>125</td>
</tr>
<tr>
<td>4.2 General Scheduler Design</td>
<td>126</td>
</tr>
<tr>
<td>4.3 Locking Schedulers</td>
<td>130</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>130</td>
</tr>
<tr>
<td>4.3.2 The Two-Phase Locking Protocol</td>
<td>133</td>
</tr>
<tr>
<td>4.3.3 Deadlock Handling</td>
<td>138</td>
</tr>
<tr>
<td>4.3.4 Variants of 2PL</td>
<td>142</td>
</tr>
<tr>
<td>4.3.5 Ordered Sharing of Locks</td>
<td>144</td>
</tr>
<tr>
<td>4.3.6 Altruistic Locking</td>
<td>150</td>
</tr>
<tr>
<td>4.3.7 Non-Two-Phase Locking Protocols</td>
<td>155</td>
</tr>
<tr>
<td>4.3.8 On the Geometry of Locking</td>
<td>162</td>
</tr>
<tr>
<td>4.4 Nonlocking Schedulers</td>
<td>166</td>
</tr>
<tr>
<td>4.4.1 Timestamp Ordering</td>
<td>166</td>
</tr>
<tr>
<td>4.4.2 Serialization Graph Testing</td>
<td>168</td>
</tr>
<tr>
<td>4.4.3 Optimistic Protocols</td>
<td>170</td>
</tr>
<tr>
<td>4.5 Hybrid Protocols</td>
<td>175</td>
</tr>
<tr>
<td>4.6 Lessons Learned</td>
<td>179</td>
</tr>
<tr>
<td>Exercises</td>
<td>180</td>
</tr>
<tr>
<td>Bibliographic Notes</td>
<td>182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5 Multiversion Concurrency Control</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Goal and Overview</td>
<td>185</td>
</tr>
<tr>
<td>5.2 Multiversion Schedules</td>
<td>186</td>
</tr>
<tr>
<td>5.3 Multiversion Serializability</td>
<td>189</td>
</tr>
<tr>
<td>5.3.1 Multiversion View Serializability</td>
<td>189</td>
</tr>
<tr>
<td>5.3.2 Testing Membership in MVS R</td>
<td>193</td>
</tr>
<tr>
<td>5.3.3 Multiversion Conflict Serializability</td>
<td>197</td>
</tr>
<tr>
<td>5.4 Limiting the Number of Versions</td>
<td>201</td>
</tr>
<tr>
<td>5.5 Multiversion Concurrency Control Protocols</td>
<td>203</td>
</tr>
<tr>
<td>5.5.1 The MVTO Protocol</td>
<td>203</td>
</tr>
<tr>
<td>5.5.2 The MV2PL Protocol</td>
<td>205</td>
</tr>
<tr>
<td>5.5.3 The MVSGT Protocol</td>
<td>209</td>
</tr>
<tr>
<td>5.5.4 A Multiversion Protocol for Read-Only Transactions</td>
<td>211</td>
</tr>
<tr>
<td>5.6 Lessons Learned</td>
<td>213</td>
</tr>
<tr>
<td>Exercises</td>
<td>214</td>
</tr>
<tr>
<td>Bibliographic Notes</td>
<td>215</td>
</tr>
</tbody>
</table>
Chapter 6 Concurrency Control on Objects: Notions of Correctness

- **6.1 Goal and Overview** 217
- **6.2 Histories and Schedules** 218
- **6.3 Conflict Serializability for Flat Object Transactions** 223
- **6.4 Tree Reducibility** 228
- **6.5 Sufficient Conditions for Tree Reducibility** 233
- **6.6 Exploiting State Based Commutativity** 240
- **6.7 Lessons Learned** 246

| Exercises | 247 |
| Bibliographical Notes | 250 |

Chapter 7 Concurrency Control Algorithms on Objects

- **7.1 Goal and Overview** 251
- **7.2 Locking for Flat Object Transactions** 251
- **7.3 Layered Locking** 252
- **7.4 Locking on General Transaction Forests** 259
- **7.5 Hybrid Algorithms** 265
- **7.6 Locking for Return Value Commutativity and Escrow Locking** 267
- **7.7 Lessons Learned** 271

| Exercises | 272 |
| Bibliographic Notes | 274 |

Chapter 8 Concurrency Control on Relational Databases

- **8.1 Goal and Overview** 277
- **8.2 Predicate-Oriented Concurrency Control** 278
- **8.3 Relational Update Transactions** 285
 - **8.3.1 Syntax and Semantics** 285
 - **8.3.2 Commutativity and Simplification Rules** 287
 - **8.3.3 Histories and Final State Serializability** 288
 - **8.3.4 Conflict Serializability** 291
 - **8.3.5 Extended Conflict Serializability** 293
 - **8.3.6 Serializability in the Presence of Functional Dependencies** 295
 - **8.3.7 Summary** 298
- **8.4 Exploiting Transaction Program Knowledge** 299
 - **8.4.1 Motivating Example** 299
 - **8.4.2 Transaction Chopping** 301
 - **8.4.3 Applicability of Chopping** 306
| Chapter 9 | Concurrency Control on Search Structures | 313 |
| 9.1 | Goal and Overview | 313 |
| 9.2 | Implementation of Search Structures by B+ Trees | 315 |
| 9.3 | Key Range Locking at the Access Layer | 320 |
| 9.4 | Techniques for the Page Layer | 327 |
| 9.4.1 | Lock Coupling | 328 |
| 9.4.2 | Link Technique | 337 |
| 9.4.3 | Giveup Technique | 339 |
| 9.5 | Further Optimizations | 340 |
| 9.5.1 | Deadlock-Free Page Latching | 340 |
| 9.5.2 | Enhanced Key Range Concurrency | 341 |
| 9.5.3 | Reduced Locking Overhead | 343 |
| 9.5.4 | Exploiting Transient Versioning | 344 |
| 9.6 | Lessons Learned | 344 |
| | Exercises | 345 |
| | Bibliographic Notes | 347 |

Chapter 10	Implementation and Pragmatic Issues	349
10.1	Goal and Overview	349
10.2	Data Structures of a Lock Manager	349
10.3	Multiple Granularity Locking and Dynamic Escalation	352
10.4	Transient Versioning	354
10.5	Nested Transactions for Intra-transaction Parallelism	357
10.6	Tuning Options	359
10.6.1	Manual Locking	359
10.6.2	SQL Isolation Levels	360
10.6.3	Short Transactions	364
10.6.4	Limiting the Level of Multiprogramming	367
10.7	Overload Control	369
10.7.1	Feedback-Driven Method	369
10.7.2	Wait-Depth Limitation	373
10.8	Lessons Learned	374
	Exercises	375
	Bibliographic Notes	375
PART THREE
RECOVERY

Chapter 11 Transaction Recovery 379
11.1 Goal and Overview 379
11.2 Expanded Schedules with Explicit Undo Operations 381
 11.2.1 Intuition and Overview of Concepts 381
 11.2.2 The Formal Model 382
11.3 Correctness Criteria for the Page Model 385
 11.3.1 Expanded Conflict Serializability 385
 11.3.2 Reducibility and Prefix Reducibility 387
11.4 Sufficient Syntactic Conditions 390
 11.4.1 Recoverability 391
 11.4.2 Avoiding Cascading Aborts 391
 11.4.3 Strictness 393
 11.4.4 Rigorousness 393
 11.4.5 Log Recoverability 398
11.5 Page Model Protocols for Schedules with Transaction Aborts 402
 11.5.1 Extending Two-Phase Locking for Strictness and Rigorousness 402
 11.5.2 Extending Serialization Graph Testing for Log Recoverability 403
 11.5.3 Extending Other Protocols for Log Recoverability 406
11.6 Correctness Criteria for the Object Model 407
 11.6.1 Aborts in Flat Object Schedules 407
 11.6.2 Complete and Partial Aborts in General Object Model Schedules 416
11.7 Object Model Protocols for Schedules with Transaction Aborts 419
11.8 Lessons Learned
 Exercises 421
 Bibliographic Notes 423

Chapter 12 Crash Recovery: Notion of Correctness 427
12.1 Goal and Overview 427
12.2 System Architecture and Interfaces 430
12.3 System Model 434
12.4 Correctness Criterion 437
12.5 Road Map of Algorithms 439
12.6 Lessons Learned ... 444
Exercises .. 444
Bibliographic Notes ... 445

Chapter 13 Page Model Crash Recovery Algorithms 447
13.1 Goal and Overview ... 447
13.2 Basic Data Structures 449
13.3 Redo-Winners Paradigm 453
 13.3.1 Actions during Normal Operation 454
 13.3.2 Simple Three-Pass Algorithm 458
 13.3.3 Enhanced Algorithm: Log Truncation, Checkpoints,
 Redo Optimization .. 473
 13.3.4 The Complete Algorithm: Handling Transaction Aborts
 and Undo Completion 491
13.4 Redo-History Paradigm 501
 13.4.1 Actions during Normal Operation 501
 13.4.2 Simple Three-Pass and Two-Pass Algorithms 501
 13.4.3 Enhanced Algorithms: Log Truncation, Checkpoints,
 and Redo Optimization 510
 13.4.4 Complete Algorithms: Handling Transaction Rollbacks
 and Undo Completion 510
13.5 Lessons Learned ... 518
 13.5.1 Putting Everything Together 519
Exercises .. 526
Bibliographic Notes ... 528

Chapter 14 Object Model Crash Recovery 531
14.1 Goal and Overview ... 531
14.2 Conceptual Overview of Redo-History Algorithms 532
14.3 A Simple Redo-History Algorithm for Two-Layered Systems
 14.3.1 Actions during Normal Operation 536
 14.3.2 Steps during Restart 539
14.4 An Enhanced Redo-History Algorithm for Two-Layered Systems
14.5 A Complete Redo-History Algorithm for General Object
 Model Executions ... 552
14.6 Lessons Learned ... 556
 Exercises .. 558
 Bibliographic Notes ... 560
Chapter 15 Special Issues of Recovery
15.1 Goal and Overview
15.2 Logging and Recovery for Indexes and Large Objects
 15.2.1 Logical Log Entries for the Redo of Index Page Splits
 15.2.2 Logical Log Entries and Flush Ordering for Large-Object Operations
15.3 Intra-transaction Savepoints and Nested Transactions
15.4 Exploiting Parallelism during Restart
15.5 Special Considerations for Main-Memory Data Servers
15.6 Extensions for Data-Sharing Clusters
15.7 Lessons Learned
Exercises
Bibliographic Notes

Chapter 16 Media Recovery
16.1 Goal and Overview
16.2 Log-Based Method
 16.2.1 Database Backup and Archive Logging during Normal Operation
 16.2.2 Database Restore Algorithms
 16.2.3 Analysis of the Mean Time to Data Loss
16.3 Storage Redundancy
 16.3.1 Techniques Based on Mirroring
 16.3.2 Techniques Based on Error-Correcting Codes
16.4 Disaster Recovery
16.5 Lessons Learned
Exercises
Bibliographic Notes

Chapter 17 Application Recovery
17.1 Goal and Overview
17.2 Stateless Applications Based on Queues
17.3 Stateful Applications Based on Queues
17.4 Workflows Based on Queues
 17.4.1 Failure-Resilient Workflow State and Context
 17.4.2 Decentralized Workflows Based on Queued Transactions
17.5 General Stateful Applications
 17.5.1 Design Considerations
 17.5.2 Overview of the Server Reply Logging Algorithm
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5.3</td>
<td>Data Structures</td>
<td>648</td>
</tr>
<tr>
<td>17.5.4</td>
<td>Server Logging during Normal Operation</td>
<td>650</td>
</tr>
<tr>
<td>17.5.5</td>
<td>Client Logging during Normal Operation</td>
<td>653</td>
</tr>
<tr>
<td>17.5.6</td>
<td>Log Truncation</td>
<td>655</td>
</tr>
<tr>
<td>17.5.7</td>
<td>Server Restart</td>
<td>657</td>
</tr>
<tr>
<td>17.5.8</td>
<td>Client Restart</td>
<td>659</td>
</tr>
<tr>
<td>17.5.9</td>
<td>Correctness Reasoning</td>
<td>662</td>
</tr>
<tr>
<td>17.5.10</td>
<td>Applicability to Multi-tier Architectures</td>
<td>666</td>
</tr>
<tr>
<td>17.6</td>
<td>Lessons Learned</td>
<td>667</td>
</tr>
<tr>
<td>Exercises</td>
<td>668</td>
<td></td>
</tr>
<tr>
<td>Bibliographic Notes</td>
<td>669</td>
<td></td>
</tr>
</tbody>
</table>

PART FOUR
COORDINATION OF DISTRIBUTED TRANSACTIONS

Chapter 18 Distributed Concurrency Control | 673
18.1 Goal and Overview | 673
18.2 Concurrency Control in Homogeneous Federations | 676
- 18.2.1 Preliminaries | 676
- 18.2.2 Distributed 2PL | 679
- 18.2.3 Distributed TO | 680
- 18.2.4 Distributed SGT | 683
- 18.2.5 Optimistic Protocols | 685
18.3 Distributed Deadlock Detection | 686
18.4 Serializability in Heterogeneous Federations | 690
- 18.4.1 Global Histories | 691
- 18.4.2 Global Serializability | 694
- 18.4.3 Quasi Serializability | 696
18.5 Achieving Global Serializability through Local Guarantees | 698
- 18.5.1 Rigorousness | 698
- 18.5.2 Commitment Ordering | 700
18.6 Ticket-Based Concurrency Control | 702
- 18.6.1 Explicit Tickets for Forcing Conflicts | 702
- 18.6.2 Implicit Tickets | 706
- 18.6.3 Mixing Explicit and Implicit Tickets | 707
18.7 Object Model Concurrency Control in Heterogeneous Federations | 708
18.8 Coherency and Concurrency Control for Data-Sharing Systems | 710
18.9 Lessons Learned | 716
Contents

Exercises 717
Bibliographic Notes 719

Chapter 19 Distributed Transaction Recovery 723
19.1 Goal and Overview 723
19.2 The Basic Two-Phase Commit Algorithm 725
 19.2.1 2PC Protocol 725
 19.2.2 Restart and Termination Protocol 733
 19.2.3 Independent Recovery 741
19.3 The Transaction Tree Two-Phase Commit Algorithm 744
19.4 Optimized Algorithms for Distributed Commit 748
 19.4.1 Presumed-Abort and Presumed-Commit Protocols 749
 19.4.2 Read-Only Subtree Optimization 756
 19.4.3 Coordinator Transfer 758
 19.4.4 Reduced Blocking 761
19.5 Lessons Learned 763
Exercises 765
Bibliographic Notes 766

PART FIVE
APPLICATIONS AND FUTURE PERSPECTIVES

Chapter 20 What Is Next? 771
20.1 Goal and Overview 771
20.2 What Has Been Achieved? 771
 20.2.1 Ready-to-Use Solutions for Developers 772
 20.2.2 State-of-the-Art Techniques for Advanced System Builders 773
 20.2.3 Methodology and New Challenges for Researchers 775
20.3 Data Replication for Ubiquitous Access 776
20.4 E-Services and Workflows 779
20.5 Performance and Availability Guarantees 783
Bibliographic Notes 787

References 791
Index 829
About the Authors 853