Inhalt

	Reaktionen in der Organischen Chemie 1
1.	Alkane und Cycloalkane 3
1.1.	Alkane 3
1.1.1.	Allgemeine Charakteristik 3
1.1.2.	Die Halogenierung der Alkane 4
1.2.	Cycloalkane 9
1.2.1.	Die Ringöffnung von Cyclopropanderivaten 9
1.2.2.	Die Aromatisierung von Cyclohexanderivaten 11
2.	Alkene, Alkadiene und Alkine 13
2.1.	Allgemeine Charakteristik der Alkene 13
2.2.	Die elektrophile Addition an Alkene 14
2.2.1.	Die Addition von Brom an Alkene 14
2.2.2.	Die Addition von Halogenwasserstoffen an Alkene 17
2.2.3.	Die Addition anderer unsymmetrischer Reagenzien 20
2.2.4.	Die Addition von HOCl und HOBr 20
2.2.5.	Die Addition von Wasser (Hydratisierung) 21
2.2.6.	Die Addition von Ameisensäure 22
2.2.7.	Die Addition von Boran (Hydroborierung) 23
2.2.8.	Die Addition von Carbonium-Ionen 25
2.2.9.	Die Addition von Carbenen 25
2.3.	Radikaladditionen an Alkene 26
2.3.1.	Die durch Radikale katalysierte Addition von Bromwasser
	stoff 26
2.4.	Die Oxidation von Alkenen 28
2.4.1.	Die Reaktion mit Ozon 28
2.4.2.	Die Reaktion mit Permanganat und Osmiumtetroxid 29
2.4.3.	Die Reaktion mit Persäuren 30
2.5.	Die Hydrierung der Alkene 31
2.6.	Die Polymerisation von Alkenen 32
2.7.	Die nucleophile Addition an Alkene 32
2.8.	Reaktionen am α-Kohlenstoffatom von Alkenen 33
2.8.1.	Die Allylhalogenierung 33
2.9.	Alkadiene 34
2.9.1.	1,4-Addition an 1,3-Alkadiene 35
2.9.2.	1,4-Cycloaddition (Diels-Alder-Synthese) 35
2.10.	Alkine 36
2.10.1.	Additionsreaktionen an Alkine 37
2.10.2.	Alkine als schwache Säuren 38

VI Inhalt

3.

4.1.7.

Arene 41

3.1.	Die elektrophile aromatische Substitution 41
3.1.1.	Die Halogenierung 41
3.1.2.	Die Nitrierung 44
3.1.3.	Die Sulfonierung 44
3.1.4.	Alkylierung und Acylierung – Die Friedel-Crafts-
	Reaktion 45
3.1.5.	Reaktionen vom Friedel-Crafts-Typ – Die Chlor-
	methylierung und die Formylierung 47
3.1.6.	Wasserstoffaustausch 48
3.1.7.	Die Orientierung bei der Substitution monosubstituierter
	Benzolderivate 48
3.1.8.	Synthetische Aspekte der Orientierungsregeln 53
3.2.	Alkylbenzole – Substitution in der Seitenkette 55
3.2.1.	Die Seitenkettenhalogenierung 55
3.2.2.	Die Oxidation von Alkylbenzolen 56
3.3.	Die Umwandlung von Substituenten am Benzolring in
	andere – Die nucleophile aromatische Substitution 57
3.3.1.	Die Reduktion von Nitroverbindungen 58
3.3.2.	Die Bildung von Diazoniumsalzen 58
3.3.3.	Die nucleophile aromatische Substitution 59
3.3.4.	Nucleophile Reaktionen mit Diazoniumsalzen 60
3.3.5.	Andere nucleophile aromatische Substitutionsreaktionen 61
3.3.6.	Die nucleophile aromatische Substitution über
	Dehydrobenzol 62
3.4.	Additionsreaktionen am Benzolring 64
3.4.1.	Die Addition von Chlor 64
3.4.2.	Die Hydrierung 64
3.5.	Kondensierte Arene 64
3.5.1.	Naphthalin 65
3.5.2.	Phenanthren 65
3.5.3.	Anthracen 67
4.	Alkohole, Phenole und Äther 69
4.1.	Alkohole und Phenole 69
4.1.1.	Säure-Base-Eigenschaften der Alkohole und Phenole 69
4.1.2.	Nucleophile Eigenschaften 71
4.1.3.	Alkohole als Substrate für den nucleophilen Angriff 73
4.1.4.	Die Darstellung von Alkylhalogeniden 73
4.1.5.	Die Darstellung von Estern aus Alkoholen und Schwefel-
	säure – Ätherbildung und Dehydratisierung 77
4.1.6.	Das Prinzip der mikroskopischen Reversibilität 80

Zusammenfassung der nucleophilen Reaktionen der Alkohole

Inhalt VII

4.1.8.	Phenole als Substrate für den nucleophilen Angriff 81
4.1.9.	Phenole und Phenolat-Ionen als Substrate für den
	elektrophilen Angriff 81
4.2.	Die Oxidation von Alkoholen und Phenolen 82
4.2.1.	Alkohole 82
4.2.2.	Phenole 84
4.3.	Verbindungen mit zwei Hydroxylgruppen 85
4.3.1.	Diole 85
4.3.2.	Zweiwertige Phenole 88
4.4.	Äther 89
4.4.1.	Epoxide 92
5.	Halogenverbindungen 95
5.1.	Nucleophile Substitutionsreaktionen 95
5.1.1.	Die S _N 1-Reaktion 96
5.1.2.	Die S _N 2-Reaktion 96
5.1.3.	Solvolysen 97
5.1.4.	Die Stereochemie nucleophiler Substitutionsreaktionen 98
5.1.5.	Der Einfluß struktureller Faktoren auf den Mechanismus
	nucleophiler Substitutionsreaktionen 99
5.1.6.	Der Einfluß der austretenden Gruppe 102
5.1.7.	Der Einfluß des Nucleophils 104
5.1.8.	Der Einfluß des Lösungsmittels 105
5.2.	Eliminierungsreaktionen 107
5.2.1.	Die E2-Eliminierung 107
5.2.2.	Die E1-Eliminierung 109
5.2.3.	Die Stereochemie der E2-Eliminierung 110
5.2.4.	Umlagerungen von Carbonium-Ionen 111
5.2.5.	Zusammenfassung 111
5.3.	Nucleophile Substitutionsreaktionen der Halogenide 113
5.3.1.	Die Reaktion mit Hydrid-Ionen 114
5.3.2.	Die Reaktion mit Alkanolat-Ionen 115
5.3.3.	Die Reaktion mit Hydroxid-Ionen 116
5.3.4.	Die Reaktion mit Acetat-Ionen 116
5.3.5.	Die Reaktion mit Jodid-Ionen 117
5.3.6.	Die Reaktion mit Ammoniak und Aminen 117
5.3.7.	Die Reaktion mit Cyanid-Ionen 118
5.3.8.	Die Reaktion mit Carbanionen 119
5.3.9.	Die Reaktion mit Hydrogensulfid-Ionen und Thiolat-
	Ionen 121
5.3.10.	Solvolysen 121
5.4.	Die Reaktion mit Magnesium – Grignard-Verbindungen 124
5.4.1.	Die Reaktion mit Säuren 125

VIII Inhalt

* ***	
5.4.2.	Die Reaktion mit Carbonylverbindungen 126
5.4.3.	Die Addition an Kohlenstoff-Kohlenstoff-Doppel-
	bindungen 126
5.4.4.	Substitutionsreaktionen 127
5.5.	Die Reaktion mit Lithium - Organolithiumverbindun-
	gen 128
5.6.	Die Reaktion mit Zink – Organozinkverbindungen 128
6.	Aldehyde und Ketone 131
6.1.	Additionen an Carbonylverbindungen 133
6.1.1.	Reaktivität 133
6.1.2.	Die Addition von Wasser 135
6.1.3.	Die Addition von Alkoholen – Darstellung von Acetalen
	und Ketalen 135
6.1.4.	Die Addition von Thiolen 138
6.1.5.	Die Addition von Cyanwasserstoff 139
6.1.6.	Die Benzoin-Reaktion 139
6.1.7.	Die Addition von Natriumhydrogensulfit 141
6.1.8.	Die Addition von Ammoniak 141
6.1.9.	Reaktionen mit Verbindungen, die Aminogruppen ent-
	halten – Additions-Eliminierungs-Reaktionen 142
6.1.10.	Die Reaktion mit Organometallverbindungen 144
6.1.11.	Die Darstellung terminaler Alkene aus Carbonylverbin-
	dungen – die Wittig-Reaktion 145
6.2.	Reaktionen am α-Kohlenstoffatom 146
6.2.1.	Das Keto-Enol-Gleichgewicht 146
6.2.2.	Die basenkatalysierte Halogenierung von Carbonylver-
	bindungen 147
6.2.3.	Die säurekatalysierte Halogenierung 148
6.2.4.	Die Aldol-Addition 149
6.2.5.	Die Addition von Carbonylverbindungen an aktivierte
	Doppelbindungen 150
6.2.6.	Die Alkylierung von Ketonen 150
6.3.	Die Reduktion von Aldehyden und Ketonen 151
6.3.1.	Die Reduktion zu Alkoholen 151
6.3.2.	Die Reduktion zu 1,2-Diolen 153
6.3.3.	Die Reduktion von C=O zu CH ₂ 153
6.4.	Die Oxidation von Carbonylverbindungen 154
6.5.	Ungesättigte Carbonylverbindungen 156
6.5.1.	Ketene 156
6.5.2.	α. β-Ungesättigte Carbonylverbindungen 157
6.6.	Dicarbonylverbindungen 159
6.6.1.	1,2-Dicarbonylverbindungen 159

Inhalt		IX
6.6.2.	1,3-Dicarbonylverbindungen 159	
6.6.3.	1,4-Dicarbonylverbindungen 160	
_		
7.	Carbonsäuren und Carbonsäurederivate 161	
7.1.	Die Säure-Base-Eigenschaften der Carbonsäuren 162	
7.2.	•	54
7.2.1.	Die Veresterung 164	
7.2.2, 7.2.3.	Die Reaktion mit Wasserstoffperoxid 166	
7.2.3. 7.3.	Die Bildung von Säurechloriden 167	
7.3. 7.3.1.	Decarboxylierungsreaktionen 167	
7.3.1. 7.3.2.	Die thermische Decarboxylierung 167	
7.3.2. 7.3.3.	Die elektrochemische Decarboxylierung 168	
7.3.3. 7.4.	Weitere oxidative Decarboxylierungsprozesse 169	^
7.4. 7.4.1.	Reaktionen am α-Kohlenstoffatom von Carbonsäuren 176	υ
7.4.1. 7.5.	Die Halogenierung 170 Die Reduktion der Carbonsäuren 171	
7.5. 7.6.	Carbonsäurehalogenide 171	
7.6.1.	Die Reaktion mit Carbonsäuren 172	
7.6.2.	Die Reaktion mit Carboxylat-Ionen 172	
7.6.3.	Die Reaktion mit Alkoholen 172	
7.6.4.	Die Reaktion mit Wasser 173	
7.6.5.	Die Reaktion mit Ammoniak und Aminen 173	
7.6.6.	Die Reaktion mit Organometallverbindungen 173	
7.6.7.	Die Reaktion mit anderen Nucleophilen 174	
7.6.8.	Die Reduktion der Säurehalogenide 174	
7.6.9.	Die Bildung von Acylium-Ionen 175	
7.6.10.	Die Eliminierung von Halogenwasserstoff 175	
7.7.	Carbonsäureanhydride 175	
7.7.1.	Die Reaktion mit Nucleophilen 175	
7.7.2.	Reaktionen am α-Kohlenstoffatom 176	
7.8.	Carbonsäureester 176	
7.8.1.	Die Hydrolyse 177	
7.8.2.	Der Zusammenhang zwischen Geschwindigkeits- und	
	Gleichgewichtskonstanten – die Hammett-Gleichung 177	
7.8.3.	Die Umesterung 182	
7.8.4.	Die Reaktion mit Ammoniak und Aminen 182	
7.8.5.	Die Reaktion mit Organometallverbindungen 183	
7.8.6.	Die Reduktion von Estern 183	
7.8.7.	Reaktionen am α-Kohlenstoffatom 183	
7.8.8.	Eliminierungen 185	
7.9.	Carbonsäureamide 185	
7.9.1.	Säure-Base-Eigenschaften 185	
7.9.2.	Die Hydrolyse 186	

X Inhalt

7.9.3.	Die Dehydratisierung – Bildung von Nitrilen 187
7.9.4.	Die Reduktion der Amide 187
7.9.5.	Der Hofmann-Abbau 188
7.3.5.	Nitrile 183
7.10. 7.10.1.	Die Hydrolyse 188
	Die Reaktion mit Alkoholen 189
7.10.2.	Die Reaktion mit Grignard-Reagenz 189
7.10.3.	Die Reduktion 189
7.10.4.	
7.11.	Ungesättigte Carbonsäuren 190 Die Addition von Bromwasserstoff an α, β-ungesättigte
7.11.1.	
- 44 2	Säuren 190
7.11.2.	Die Lactonbildung 190
7.12.	Hydroxysäuren 191
7.12.1.	Die Bildung von Lactonen 191
7.13.	Ketosäuren 191
7.13.1.	α-Ketosäuren 191
7.13.2.	
7.13.3.	Die Umkehr der Claisen-Reaktion 192
7.14.	Dicarbonsäuren 192
7.14.1.	Säure-Base-Eigenschaften 192
7.14.2.	Das Verhalten beim Erhitzen 193
7.15.	Derivate der Dicarbonsäuren 196
7.15.1.	Anhydride 196
7.15.2.	Imide 197
7.15.3.	Ester 198
7.16.	Ringschlußreaktionen 198
8.	Organische Stickstoffverbindungen 203
8.1.	Amine 204
8.1.1.	Säure-Base-Eigenschaften 204
8.1.2.	Die Alkylierung von Aminen 206
8.1.3.	Die Acylierung von Aminen 206
8.1.4.	Die Reaktion mit Carbonylverbindungen – reduktive Al
	kylierung 206
8.1.5.	Die Reaktion mit Benzolsulfonylchlorid 206
8.1.6.	Die Reaktion mit salpetriger Säure 207
8.1.7.	Die Oxidation der Amine 210
8.1.8.	Die elektrophile Substitution aromatischer Amine 211
8.2.	Quartäre Ammoniumverbindungen 212
8.2.1.	Quartare Ammoniumhydroxide 212
8.2.2.	
8.3.	Die Eliminierungs- und Substitutionsreaktionen 213 Amide und Nitrile 214
8.4	Imine 214

Inhalt XI

8.5. 8.6. 8.7. 8.8. 8.9. 8.9.1.	Hydrazine und Hydrazone 214 Hydroxylamine und Oxime 216 Azoverbindungen 217 Azide 218 Nitroverbindungen 218 Aliphatische Nitroverbindungen 219 Die Reduktion von Nitroverbindungen 220
9. 9.1. 9.1.1. 9.1.2. 9.1.3. 9.2. 9.2.1. 9.3. 9.3.1. 9.3.2. 9.3.3.	Organische Schwefelverbindungen 223 Thiole 224 Säure-Base-Eigenschaften 224 Die nucleophilen Eigenschaften der Thiolat-Ionen 225 Die Oxidation der Thiole 225 Sulfide und Sulfoniumsalze 225 Die Desulfurierung 226 Sulfonsäuren und Sulfonsäurederivate 227 Säureeigenschaften 227 Die Bildung von Sulfonylchloriden 227 Substitutionsreaktionen an aromatischen Sulfonsäuren 227
10. 10.1. 10.2. 10.3. 10.4. 10.4.1. 10.4.2. 10.4.3. 10.4.4. 10.5.	Heterocyclische Verbindungen 229 Heteroaliphatische Verbindungen 229 Heteroäthylenische Verbindungen 230 Heteroaromatische Verbindungen 230 π-Reiche Heteroaromaten 231 Aromatische Eigenschaften 231 Baseneigenschaften 232 Die elektrophile Substitution 233 Additionsreaktionen 235 π-Arme Heteroaromaten 235
11. 11.1. 11.2. 11.2.1. 11.3. 11.4. 11.4.1. 11.4.2. 11.4.3. 11.4.4. 11.4.5. 11.4.6.	Naturstoffe 239 Die Einteilung der Naturstoffe 239 Kohlenhydrate 240 Die Klassifizierung 240 Struktur und Konfiguration der einfachen Zucker — Glucose 241 Die chemischen Eigenschaften der Glucose 250 Die Mutarotation 250 Die Glykosidbildung 251 Die Acetylierung 252 Die Methylierung 253 Die Einwirkung von Säuren 254 Die Einwirkung von Alkali 254

XII Inhalt

11.4.7.	Die Oxidation 255
11.4.8.	Die Reduktion 255
11.4.9.	Die Osazonbildung 256
11.5.	Disaccharide 256
11.6.	Polysaccharide 258
11.7.	Lipide 260
11.8.	Aminosäuren, Peptide und Proteine – Allgemeines 262
11.9.	Aminosäuren 263
11.9.1.	Struktur und Konfiguration 263
11.9.2.	Säure-Base-Eigenschaften 265
11.9.3.	Chemische Eigenschaften 266
11.10.	Proteine und Peptide 267
11.10.1.	Die Klassifizierung der Proteine 267
11.10.2.	Die Struktur der Proteine 268
11.10.3.	Enzyme 271
11.10.4.	Peptide 273
11.10.5.	Die Peptidsynthese 274
11.11.	Nucleotide und Nucleinsäuren 276
11.11.1.	Die Struktur der Nucleinsäuren 276
11.12.	Terpene oder isoprenoide Verbindungen 282
11.13.	Steroide 285
11.14.	Alkaloide 288
11.14.1.	Phenylalkylamine 289
11.14.2.	Piperidin- und Pyridinderivate 289
11.14.4.	Chinolin- und Isochinolinalkaloide 291
11.14.3.	Indolalkaloide 290
11.15.	Antibiotica 292
12.	Synthesen 293
12.1.	Die direkte Substitution eines Wasserstoffatoms durch
	eine funktionelle Gruppe 295
12.2.	Methoden zum Austausch funktioneller Gruppen gegen
	Wasserstoffatome 296

12.4. Kettenverlängerungs- und Kettenverzweigungsreaktionen12.5. Die Spaltung von Kohlenstoff-Kohlenstoff-Bindungen 306

Methoden, nach denen man eine funktionelle Gruppe in

12.6. Beispiele für Mehrstufensynthesen 307

eine andere umwandeln kann 297

12.3.

12.6.1. Beispiel 1. Die Darstellung von 2-Methylhexansäure aus Butylbromid 307

12.6.2. Beispiel 2. 2-Methylcyclohexanon aus Cyclohexanon 308

12.6.3. Beispiel 3. Die Darstellung von *m*-Isobutylanilin aus Benzol 310

Inhalt XIII

12.6.4.	Beispiel 4. Die Darstellung von Methylencyclohexan aus Cyclohexancarbonsäure 312
12.6.5.	Beispiel 5. Die Darstellung von <i>trans-</i> 3-Bicyclo [3.1.0] hexanol 313
12.6.6.	Beispiel 6. Die Darstellung von Cuban 315
12.6.7.	Beispiel 7. Die Darstellung der Lysergsäure 318
13.	Strukturanalyse 323
13.1.	Chemische Strukturbeweise 325
13.1.1.	Beispiel 1. Essigsäure (um 1860) 325
13.1.2.	Beispiel 2. Naphthalin (um 1870) 326
13.1.3.	Beispiel 3. Coniin (um 1885) 327
13.1.4.	Beispiel 4. Atropin (1890–1910) 327
13.2.	Physikalische Strukturbeweise 332
13.2.1.	Beispiel 1 334
13.2.2.	Beispiel 2 336
13.2.3.	Beispiel 3 337
13.2.4.	Beispiel 4 339
	Angewandte Organische Chemie 341
14.	Die Synthese organischer Verbindungen in der Industrie 343
14.1.	Rohstoffquellen 345
14.1.1.	Steinkohlenteer 346
14.1.2.	Naturstoffe als Rohstoffquellen 346
14.1.3.	Erdől, Petroleum 348
14.2.	Benzin 349
14.2.1.	Das Kracken 350
14.2.2.	Das Reformieren 351
14.2.3.	Die Alkylierung 352
14.3.	Petrochemie 353
14.3.1.	Organische Verbindungen aus CO und CO ₂ 354
14.3.2.	Organische Verbindungen aus Alkanen 356
14.3.3.	Organische Verbindungen aus den niederen Olefinen 357
14.3.4.	Organische Verbindungen aus Acetylen 365
14.3.5.	Organische Verbindungen aus Benzol, Alkylbenzolen
	und Naphthalin 366
15.	Polymere 371
15.1.	Anwendungsgebiete 371
15.2.	Die Bildung von Polymeren 372
15.3.	Die Struktur der Polymeren 374
15.4.	Kondensationspolymere 376
15.4.1.	Polyester 376

15.4.2. Polyamide 377

XIV Inhalt

15.4.3.	Heterocyclische Kondensationspolymere 378
15.4.4.	Polyurethane 379
15.4.5.	Phenol-Formaldehyd-Polymere 379
15.4.6.	Harnstoff-Formaldehyd-Polymere (Aminoplaste) 379
15.4.7.	Polymere aus Epoxiden 380
15,4.8.	Silicone 380
15.5.	Additionspolymere 381
15.5.1.	Polyäthylen – Radikal- und Koordinationspolymerisation
15.5.2.	Polypropylen 383
15,5.3.	Polyisobuten – kationische Polymerisation 384
15.5.4.	Polybutadien 384
15.5.5.	Polyisopren 385
15.5.6.	Polystyrol 385
15.5.7.	Polyvinylchlorid (PVC) 385
15.5.8.	Polyacrylnitril – anionische Polymerisation 385
15.6.	Modifizierte Polymere 386
15.0.	Modifizierre Folymere 300
16.	Arzneimittel, Biozide, Sprengstoffe, Farbstoffe und
	Waschmittel 389
16.1.	Arzneimittel 389
16.1.1.	Die Receptortheorie 390
16.1.2.	Die Ausscheidung 392
16.1.3.	Transmittoren (Überträgersubstanzen) 392
16.1.4.	Das Zentralnervensystem 393
16.1.5.	Die Arzneimittelforschung in der Praxis 397
16.2.	Biozide 398
16.2.1.	Insektizide 398
16.2.2.	Fungizide 399
16.2.3.	Herbizide 400
16.3.	Sprengstoffe 400
16.3.1.	Verschiedene Typen explosiver Verbindungen 401
16.3.2.	Sprengstoffe 402
16.3.3.	Initialsprengstoffe 403
16.4.	Farben und Färben 404
16.4.1.	Die direkte Färbung 405
16.4.2.	Dispersionsfarbstoffe 405
16.4.3.	Entwicklungsfarbstoffe 406
16.4.4.	Die Küpenfärbung
16.4.5.	Das Beizen 407
16.4.6.	Farbstoffe, die chemisch an die Faser gebunden werden
	(Reaktivfarbstoffe) 408
16.4.7.	Pigmente 408
16.5.	Farbstoffe 408

Inhalt XV

16.5.1.	Azoiarbstoile 408
16.5.2.	Triarylmethanfarbstoffe 409
16.5.3.	Chinonfarbstoffe 412
16.5.4.	Indigofarbstoffe 413
16.5.5.	Phthalocyaninpigmente 414
16.6.	Waschmittel 414
16.6.1.	Waschmittelarten 416
	Literaturhinweise 419
	Tabelle der Trivialnamen 423
	Namenregister 435
	Register 437