Inhalt

Einleitung	
Literatur	
1. Stammsysteme	
1.1. Acyclische K	Kohlenwasserstoff-Systeme
1.2. Cyclische Sy	steme
1.2.1. Cyclische Ko	ohlenwasserstoff-Systeme
1.2.1.1. Monocyclisc	he Kohlenwasserstoffe
	e Kohlenwasserstoffe
	e polycyclische Kohlenwasserstoffe 12
	polycyclische Kohlenwasserstoffe 23
1.2.1.2.3. Spiro-Kohler	nwasserstoffe
	erstoff-Ringsysteme, die über Einfach-
oder Doppel	bindungen miteinander verknüpft sind . 32
	ohlenwasserstoffe mit Seitenketten 34
1.2.2. Heterocyclis	che Systeme
	1
1.2.2.2. Ersetzungsno	omenklatur (sog. "a"-Nomenklatur) 44
1.2.2.3. Das Hantzso	ch-Widman-Patterson-System 46
2. Substituierte System	ee e
2.1. Allgemeine Vo	orbemerkungen 59
2.2. Nomenklaturt	ypen für substituierte Systeme 60
2.2.1. Die substitutiv	ve Nomenklatur 60
2.2.2. Die radikofunl	ktionelle Nomenklatur 67
2.2.3. Die additive N	Nomenklatur
2.2.4. Die subtraktiv	e Nomenklatur 70
2.2.5. Die konjunktiv	ve Nomenklatur
2.2.6. Die Nomenkla	tur für substituierte Aggregate identischer
	mit direkter Verknüpfung
	mponenten, die an di- oder polyvalente
	nden sind
	g radikalischer und ionischer Spezies . 76
	· · · · · · · · · · · · · · · · · · ·

VIII	Inhalt
V 111	

277	Kationen	77
2.2.7.2.	Kationradikale (Radikalkationen)	80
2.2.1.3.	Anionen	80
2.2.1.4.	Radikalanionen (Anionradikale)	81
2.2.7.3.	Verbindungen mit zwei (oder mehr) gleichartigen	
4.2.1.0.	ionischen Zentren	82
2277	Verbindungen mit positiven und negativen Zentren	83
2.3.	Kurze Exemplifizierung der allgemeinen Nomenklatur-	
2.3.	regeln für die wichtigsten Verbindungsklassen	84
2.3.1.	Carbonsäuren, Sulfonsäuren u. a. und ihre Derivate .	84
2.3.1.	Nitrile, Isocyanide und ähnliche Verbindungen	88
2.3.3.	Aldehyde und Ketone	89
2.3.4.	Alkohole, Phenole und ihre Derivate	95
2.3.5.	Ether und Thioether	98
2.3.6.	Amine und ihre Derivate	100
2.3.7.	i ilimite alla lille Bellivate	105
2.3.7.	Azo- und Azoxyverbindungen	105
2.3.9.	Hydrazine und ihre Abkömmlinge	108
2.3.10.		109
2.3.10.		
4. J. 11.	atomen	109
2 3.12		
2.3.13		
2.3.14		
	Hydrazinderivate der Kohlensäure	113
2.3.13	. Trydrazindenvate der Komensaure	113
3. Di	e Konstruktion der Namen komplexer Verbindungen	
		445
2.1.)	Bestimmung der ranghöchsten Kette (Hauptkette)	115
3.2.	Bestimmung des ranghöchsten Ringsystems	116
3.3.	Behandlung der ranghöchsten charakteristischen Gruppe	
	im Rahmen der beiden vorstehenden Abschnitte 3.1	
3.4	und 3.2	117
3.4.	Bezifferung	118
3.5.	Ordnung der Präfixe	119
5.0.	Beispiele	120
4 4	mbong & T. L. H	
7. A	anhang I Tabellen beizubehaltender Trivialnamen (und	
	Semitrivialnamen)	. 129
5. A	Anhang II Die "Wiswesser Line Notation"	153
	5 Williams Francisci Fine Molation	. 133
San	thverzeichnis	
Jac	hverzeichnis	. 159