Contents

.

Prei	ace	1X
	pter 1 Introduction to Multivariate Statistics	г
1.1	Definition of Multivariate Statistics	1
1.2	Relationship of Multivariate Statistics	~
1.0	to Univariate Statistics	5
1.3	Choice of Variables and Multivariate Method,	~
1 4	and the Concept of Optimal Linear Combination	7
1.4	Data for Multivariate Analyses	8
1.5	Three Fundamental Matrices in Multivariate Statistics	11
	1.5.1 Covariance Matrix	12 12
	1.5.2 Correlation Matrix	13
1 (1.5.3 Sums-of-Squares and Cross-Products Matrix	15 17
1.6	Illustration Using Statistical Software	17
Cha	pter 2 Elements of Matrix Theory	
2.1	Matrix Definition	31
2.2	Matrix Operations, Determinant, and Trace	33
2.3	Using SPSS and SAS for Matrix Operations	46
2.4	General Form of Matrix Multiplications With Vector,	
	and Representation of the Covariance, Correlation,	
	and Sum-of-Squares and Cross-Product Matrices	50
	2.4.1 Linear Modeling and Matrix Multiplication	50
	2.4.2 Three Fundamental Matrices of Multivariate Statistics	
	in Compact Form	51
2.5	Raw Data Points in Higher Dimensions, and Distance	
	Between Them	54
Cha	pter 3 Data Screening and Preliminary Analyses	
3.1	Initial Data Exploration	61
3.2	Outliers and the Search for Them	69
	3.2.1 Univariate Outliers	69
	3.2.2 Multivariate Outliers	71
	3.2.3 Handling Outliers: A Revisit	78
3.3	Checking of Variable Distribution Assumptions	80
3.4	Variable Transformations	83

.

Cha	pter 4 Multivariate Analysis of Group Differences
4.1	A Start-Up Example
4.2	A Definition of the Multivariate Normal Distribution
4.3	Testing Hypotheses About a Multivariate Mean
	4.3.1 The Case of Known Covariance Matrix
	4.3.2 The Case of Unknown Covariance Matrix
4.4	Testing Hypotheses About Multivariate Means of
	Two Groups 110
	4.4.1 Two Related or Matched Samples
	(Change Over Time)
	4.4.2 Two Unrelated (Independent) Samples
4.5	Testing Hypotheses About Multivariate Means
	in One-Way and Higher Order Designs (Multivariate
	Analysis of Variance, MANOVA)
	4.5.1 Statistical Significance Versus Practical Importance
	4.5.2 Higher Order MANOVA Designs
	4.5.3 Other Test Criteria
4.6	MANOVA Follow-Up Analyses
4.7	Limitations and Assumptions of MANOVA145
	·
Cha	pter 5 Repeated Measure Analysis of Variance
5.1	Between-Subject and Within-Subject Factors
	and Designs
5.2	Univariate Approach to Repeated Measure Analysis 150
5.3	Multivariate Approach to Repeated Measure Analysis
5.4	Comparison of Univariate and Multivariate Approaches
	to Repeated Measure Analysis
Cha	pter 6 Analysis of Covariance
6.1	Logic of Analysis of Covariance 182
6.2	Multivariate Analysis of Covariance 192
6.3	Step-Down Analysis (Roy-Bargmann Analysis) 198
6.4	Assumptions of Analysis of Covariance 203
~	
Cha	pter 7 Principal Component Analysis
7.1	Introduction
7.2	Beginnings of Principal Component Analysis 213
7.3	How Does Principal Component Analysis Proceed?
7.4	Illustrations of Principal Component Analysis
	7.4.1 Analysis of the Covariance Matrix Σ (<i>S</i>) of the
	Original Variables
	7.4.2 Analysis of the Correlation Matrix $P(R)$ of the
- -	Original Variables
7.5	Using Principal Component Analysis in Empirical Research

	7.5.1	Multicollinearity Detection	234
	7.5.2	PCA With Nearly Uncorrelated Variables Is	
		Meaningless	235
	7.5.3	Can PCA Be Used as a Method for Observed Variable	
		Elimination?	236
	7.5.4	Which Matrix Should Be Analyzed?	236
	7.5.5	PCA as a Helpful Aid in Assessing Multinormality	237
	7.5.6	PCA as "Orthogonal" Regression	237
	7.5.7	PCA Is Conducted via Factor Analysis Routines in	
		Some Software	237
	7.5.8	PCA as a Rotation of Original Coordinate Axes	238
	7.5.9	PCA as a Data Exploratory Technique	238
Cha	pter 8	Exploratory Factor Analysis	
8.1	Intro	duction	241
8.2	Mode	el of Factor Analysis	242
8.3	How	Does Factor Analysis Proceed?	248
	8.3.1	Factor Extraction	248
		8.3.1.1 Principal Component Method	248
		8.3.1.2 Maximum Likelihood Factor Analysis	256
	8.3.2	Factor Rotation	262
		8.3.2.1 Orthogonal Rotation	266
		8.3.2.2 Oblique Rotation	267
8.4	Неум	vood Cases	273
8.5	Facto	r Score Estimation	273
	8.5.1	Weighted Least Squares Method	
		(Generalized Least Squares Method)	274
	8.5.2	Regression Method	274
8.6	Com	parison of Factor Analysis and Principal	
	Comp	ponent Analysis	276
Cha	mton 0	Confirmatory Factor Analysis	
Сна 0 1	Intro	duction	270
9.1 0.7		rt-Un Evampla	279
9.Z	Confi	fre-Op Example	··· 279 281
9.3 Q 1	Eittin	a Confirmatory Factor Analysis Models	201
7.4 0 5	A Rei	of Introduction to Mulus and Fitting the	204
9.9	Evam	nle Model	287
0 6	Exam	pie Woder	207
9.0	Anal	ig Falameter Restrictions in Commutory Factor	208
07	- Analy - Sport	figation Soarch and Model Fit Improvement	270 200
7./ 0.0	Speci	a Confirmatory Factor Analysis Models to the	500
7.0	Moor	and Covariance Structure	207
00	Evan	ining Group Differences on Latent Variables	JU/ 21/
7.7	LXam	ming Group Differences on Latent Variables	514

Chap	ter 10	Discriminant Function Analysis			
10.1	Introd	uction	. 331		
10.2	What I	Is Discriminant Function Analysis?	. 332		
10.3	Relationship of Discriminant Function Analysis to Other				
	Multiv	variate Statistical Methods	. 334		
10.4	Discri	minant Function Analysis With Two Groups	. 336		
10.5	Relatio	onship Between Discriminant Function and			
	Regres	ssion Analysis With Two Groups	. 351		
10.6	Discrii	minant Function Analysis With More Than			
	Two G	Groups	. 353		
10.7	Tests i	n Discriminant Function Analysis	. 355		
10.8	Limita	tions of Discriminant Function Analysis	. 364		
Chan	for 11	Canonical Correlation Analysis			
11 1	Introd	uction	267		
11.1	Haw I	Door Cononical Correlation Analysis Proceed?	. 307		
11.2	Tooto a	ond Interpretation of Canonical Variator	. 370		
11.3	Tests a	ind Interpretation of Canonical Variates	. 372		
11.4	Canon	rical Correlation Approach to Discriminant	204		
11 E	Analys	ality of Connected Convolution Analysis	200		
11.5	Genera	any of Canonical Correlation Analysis	. 389		
Chap	ter 12	An Introduction to the Analysis			
		of Missing Data			
12.1	Goals	of Missing Data Analysis	. 391		
12.2	Patterr	ns of Missing Data	. 392		
12.3	Mecha	nisms of Missing Data	. 394		
	12.3.1	Missing Completely at Random	. 396		
	12.3.2	Missing at Random	. 398		
	12.3.3	Ignorable Missingness and Nonignorable			
		Missingness Mechanisms	. 400		
12.4	Traditi	ional Ways of Dealing With Missing Data	401		
	12.4.1	Listwise Deletion	. 402		
	12.4.2	Pairwise Deletion	. 402		
	12.4.3	Dummy Variable Adjustment	. 403		
	12.4.4	Simple Imputation Methods	. 403		
	12.4.5	Weighting Methods	. 405		
12.5	Full In	formation Maximum Likelihood			
	and M	ultiple Imputation	. 406		
12.6	Examin	ning Group Differences and Similarities			
	in the l	Presence of Missing Data	407		
	12.6.1	Examining Group Mean Differences With			
		Incomplete Data	. 410		
	12.6.2	Testing for Group Differences in the Covariance			
		and Correlation Matrices With Missing Data	. 427		

Chap	oter 13	Multivariate Analysis of Change Processes	
13.1	Introd	uction	433
13.2	Model	ing Change Over Time With Time-Invariant	
	and Ti	me-Varying Covariates	434
	13.2.1	Intercept-and-Slope Model	435
	13.2.2	Inclusion of Time-Varying and Time-Invariant	
		Covariates	436
	13.2.3	An Example Application	437
	13.2.4	Testing Parameter Restrictions	442
13.3	Modeling General Forms of Change Over Time		
	13.3.1	Level-and-Shape Model	448
	13.3.2	Empirical Illustration	450
	13.3.3	Testing Special Patterns of Growth or Decline	455
	13.3.4	Possible Causes of Inadmissible Solutions	459
13.4	Model	ing Change Over Time With Incomplete Data	461
Appendix:		Variable Naming and Order for Data Files	467
Refe	rences		469
Auth	or Inde	x	473
Subj	ect Inde	ex	477