TABLE OF CONTENTS

Volume I

Chapter 1 Environmental Impact and Significance of Pesticides
Chapter 2 Basic Principles and Practices in the Analysis of Pesticides
Chapter 3 Positive Identification of Pesticide Residues by Chemical Derivatization Techniques
Chapter 4 The Chemistry of Cyclodiene Insecticides
Index

ENVIRONMENTAL IMPACT AND SIGNIFICANCE OF PESTICIDES

W.M.J. Strachan, W.A. Glooschenko, and R.J. Maguire

I.	Introduction	2						
П.	Pesticide Types and Properties							
	A. Organochlorines	2						
	B. Organophosphates							
	C. Carbamates							
	D. Phenoxyalkanoic Acid Derivatives							
	E. Substituted Ureas							
	F. Triazines							
III.	Transport and Movement							
	A. Atmosphere	5						
	B. Water	7						
	C. Sediments	•						
IV.	Accumulation1	l						
V.	Degradation	2						
VI.	Modeling1	5						
VII.	Toxicology							
VIII.	Monitoring	7						
Refere	nces	;						

BASIC PRINCIPLES AND PRACTICES ON THE ANALYSIS OF PESTICIDES

Alfred S. Y. Chau and Hing-Biu Lee

I.	Intro	ductio	n	7
П.	Gene	ral Sec	quence for Pesticide Residue Analysis	•
	А.		pling, Sample Handling, Storage, and Preservation	
	B.		ple Preparation	
	C.		action	
		1.	Purity of Solvents)
		2.	Selection of a Solvent System)
		3.	Selection of a Procedure	
	D.	Clea	nup	l
		1.	Liquid-Liquid Partitioning	Į
		2.	Liquid-Solid Chromatography (Column Cleanup)	
		3.	Thin-Layer Chromatography (TLC)	
		4.	Chemical Cleanup	
			a. Acid Cleanup	5
			b. Alkaline Cleanup	5
			c. Base-Acid Partitioning	5
		5.	Sweep Co-Distillation	7
		6.	Gel-Permeation Chromatography (GPC)	7
	Ε.	Gas-	Liquid Chromatography (GLC)	3
		1.	Instrumentation	3
		2.	GLC Column Technology)
			a. Column Material)
			b. Solid Support)
			c. Stationary Phase40)
			d. Preparation of Column Packings40)
			e. Packing and Conditioning of a New Column41	l
			f. Carrier Gas42	2
			g. Column Efficiency and Resolution42	2
			h. Maintenance of a GLC Column44	ł
		3.	Gas Chromatographic Detectors44	ŀ
			a. Electron-Capture Detector (ECD)44	ŧ
			b. Alkali Flame Ionization Detector (AFID) and Nitrogen-	
			Phosphorus Detector (N-PD)46	
			c. Flame Photometric Detector (FPD)47	
			d. Electrolytic Conductivity Detectors	
			e. Microcoulometric Detector (MCD)48	3
III.	Prepa	aration	of Standard Solutions	3
	A.	Cond	centrated Stock Solutions48	3
	В.		mediate Concentration Stock Solutions49	
	C.	Wor	king Standards	9

26 Analysis of Pesticides in Water

IV.	Conf	irmation of Pesticide Identity50
	Α.	Adsorption Column Elution Pattern51
	В.	Thin-Layer Chromatography (TLC)52
	C.	High-Pressure Liquid Chromatography (HPLC)53
	D.	Extraction p-Values
	E.	Specific Detectors
	F.	Spectroscopic and Spectrometric Analysis54
		1. Nuclear Magnetic Resonance Spectroscopy (NMR)54
		2. Infrared Spectroscopy (IR)54
		3. UV Spectroscopy
		4. Mass Spectroscopy
	G.	Chemical Confirmatory Tests
	Н.	Photochemical Confirmatory Tests55
v.	Some	e Aspects of Quality Control
	А.	Introduction
	В.	Purpose of Inter- and Intralaboratory Quality Control Programs56
	C.	Structure of an Effective Quality Control Program
	D.	Discussion of Some Key Aspects of an Effective Interlaboratory
		Quality Control Program
		1. Analytical Reference Standards
		2. Suitability of Analytical Methodology and Compatibility of
		Analytical Data
		3. Standard Reference Materials (SRM)
		4. Sampling, Sample Handling, and Storage
VI.	Dica	ussion of Some Key Steps in Sample Preparation for Residue Analysis61
¥1.	A.	Evaporation
	л.	1. Evaporation to a Small Volume 61
		 Evaporation to a small volume
	B.	Replacement of One solvent for Another
	Б.	1. For Large Volume of Solvent 65
		 For Small Volume of Solvent
		3. For High Boiling Point Solvents
	C.	Removal of Water in Water Immiscible Solvents
	D.	Special Treatment of Glassware
	Ē.	Solvent Purity
	F.	Emulsion
	G.	Sulfur Removal
	н.	Effects of Co-Extractives
		1. Artifacts
		2. Interferences
VII.	Thin	-Layer Chromatography (TLC)
V 11.	A.	Introduction
	А. В.	Adsorbents
	Б. С.	Coating of TLC Plates
	D.	Spotting
	Б. Е.	Development and Visualization
	- .	1. Preparation
		2. Developing solvents
		3. Visualization

F.	TLC-GLC Method	
G.	Discussion	
Н.	Other Forms of TLC	
	1. Reversed-Phase TLC (RP-TLC)	
	2. High-Performance TLC (HP-TLC)	
References .		

I. INTRODUCTION

Pests have long been known to man. The Old Testament has many references to plagues of locust, to wines "eaten by the worms", and the olive "that cast his fruit". There are numerous forms of pests and as many attempted control measures. Formulations prepared from plant extracts such as nicotine or simple inorganic salts such as arsenic compounds were perhaps the earliest forms of pesticides recorded in ancient documents of more than several hundreds of years ago in old countries such as China. It was not until 1939, however, that the ability of the xenobiotic compound DDT, to control undesirable insects was discovered. Subsequently, methoxychlor, a DDT analog, was also found to be effective against a wide range of insects, although in some instances it is less effective than DDT. Later, in 1945, the discovery of a plant growth regulator known as 2,4-D, a phenoxyalkanoic acid, opened the door for the discovery of a multitude of similar compounds which are used as herbicides to control undesirable weeds by their selective action on broadleaf plants. Since then, chemicals for pest control have had a dramatic rise in types, number, and quantity. Although these chemicals control insects, weeds, and other pests and hence increase agricultural products and minimize diseases to humans and animals, some can also remain active in the environment for long periods of time, and some can affect the nontarget organisms such as fish and wildlife. The bioaccumulative tendency and nontarget side effects of these chemicals could pose a hazard to health and to the environmental ecosystem. Therefore, the monitoring and surveillance of these chemicals in food and in the environment is a necessary and basic step for health protection, environmental assessment, and pollution control. In the latter case, for example, the identification, characterization, and measurement of the concentration of pollutants in the environment provide not only a better understanding of the extent and effects of pollution, but also of the effectiveness of existing and new pollution control action.

Pesticides can be defined as substances that kill or control some unwanted organisms such as insects, fungi, undesirable plants, rodents (rats and mice), mites, or nematodes. According to their intended targets, pesticides can be more accurately classified into the following groups, namely, insecticides, fungicides, herbicides, rodenticides, miticides, and nematocides. For example, insecticides are agents to control or kill harmful insects affecting plants, animals, and humans; fungicides are substances that prevent, cure, or control plant diseases caused by fungi; herbicides are substances that kill weeds or increase or decrease plant growth or alter these states to increase their benefit to man. These three classes of pesticides are the most widely used. Included in the general term of pesticides could also be antibiotics, defoliants, and desiccants. An individual chemical can have two or more functions, acting, for example, as an insecticide as well as fungicide.

POSITIVE IDENTIFICATION OF PESTICIDE RESIDUES BY CHEMICAL DERIVATIZATION-GAS CHROMATOGRAPHIC TECHNIQUE*

Alfred S. Y. Chau

I.	General Discussion of Several Confirmatory Techniques					
	Α.	Introduction	.84			
	В.	Various Approaches on Confirmation of Pesticide Residue Identity	.85			
		1. Spectrochromatogram	.85			
		2. Thin-Layer Chromatography (TLC)				
		3. Multi-Column GLC Techniques	.86			
		4. p-Values	.86			
		5. Chemical Derivatization Techniques	.87			
II.	General Discussion of Derivatization Techniques for O.C.s					
	Α.	Introduction				
	В.	Solid-Matrix (SM) Derivatization Techniques	.89			
	C.	Types of Solid Matrix Developed for Pesticide Confirmation	.91			
III.	Orga	anochlorine Pesticides (O.C.s)	.93			
	Α.	DDT Group	.94			
	В.	Endrin				
		1. Acid-Catalyzed Isomerization Procedures	.99			
		2. CrCl ₂ Reaction	102			
	C.	Dieldrin				
	D.	Aldrin				
	Ε.	E. The Chlordane Group				
		1. Heptachlor	08			
		2. Heptachlor Epoxide and Chlordane Isomers	13			
	F.	Miscellaneous O.C.s 1	15			
		1. Endosulfans (α- and β-isomers)1	15			
		2. Mirex 1	20			
		3. Kepone1	22			
		4. Lindane and Other BHC Isomers1	23			
		5. HCB (Hexachlorobenzene) 1	27			
IV.	Other Pesticides					
	A. Organophosphorus Pesticides (O.P.s)					
		1. Hydrolysis of O.P.s and Derivatization of the Products 1				
		a. Derivatization of the P Moiety				
		b. Derivatization of the Phenolic or Thiophenolic Moiety 1	36			

^{*} The author gratefully acknowledges the suggestions and critical review of this material by W. W. Sans (Canada Agriculture, London, Ontario), M. Chiba (Canada Agriculture, Vineland, Ontario), M. A. Forbes and D. McGregor (Environment Canada, Ottawa, Ontario), and B. Ripley (Ontario Ministry of Agriculture and Food, Guelph, Ontario).

		2.	Derivatization of Intact O.P.s
			a. Trifluoroacetylation
			b. Methylation by NaH/CH ₃ I/DMSO System
			c. Chromous Chloride Reduction
			d. Chemical Oxidation142
		3.	Conclusion
	В.	Phen	oxyalkanoic Acids142
	C.	Carb	amates and Ureas144
	D.	Triaz	zines
		1.	General Discussion149
		2.	Confirmation Procedure for the Parent Triazines
		3.	Summary
		4.	Confirmation of Major Metabolites of Triazines154
		5.	Conclusion 155
V.		niques Sens	nd Selection Criteria of Chemical Derivatization Confirmation 155 itivity
	в. С.		Reagent Background
	D.		ity to Destroy Sample Co-Extractives
	υ.		actives
	E.		que Retention Time of Derivative
	F.		nation of One Single Derivative Peak
	r. G.		nation of a Derivative Peak with Height Equal to or Higher than
	U.		Parent Compound
	Н.		plicity, Applicability, and Specificity
	11.	Shin	picity, Applicability, and Specificity
VI.	Sum	mary.	
Refe	rences.		

I. GENERAL DISCUSSION OF SEVERAL CONFIRMATORY TECHNIQUES

A. Introduction

As discussed later on the analysis of pesticide residues, gas-liquid chromatographic (GLC or GC) techniques in conjunction with selective and specific detectors such as the electron-caputred and flame photometric detectors are the most widely used instruments and probably the key practical instruments used in routine analysis of low level pesticide residues in environmental sample. Although GC/MS systems can now generally meet the sensitivity of these selective or specific detectors, they are not as widely used as the gas chromatography-selective or specific detector system. This is probably because a sensitive GC/MS system suitable for routine monitoring of trace organics in the aquatic system has only recently been available. Moreover, the initial cost could be prohibitive to many laboratories. Therefore, the gas chromatograph with specific detectors still is a main tool in pesticide analysis. These systems are used complimentary to one another in the few laboratories that are fortunate enough to have both for trace analysis.

THE CHEMISTRY OF THE CYCLODIENE INSECTICIDES

John W. ApSimon and Kazuyuki Yamasaki

I.	Introduction		
11.	A Note on Nomenclature		
III.	Synthesis		
	A. Diene		
	B. Hexachlorocyclopentadiene		
	C. Chlordane		
	D. Heptachlor		
	E. Aldrin and Dieldrin		
	F. Isodrin and Endrin		
IV.	Chemical Reactions of Heptachlor, Chlordane, and Related Compounds181		
v.	Chemical Reactions of Aldrin, Isodrin, and Related Compounds		
VI.	Chemical Reactions of Dieldrin, Endrin, and Related Compounds		
VII.	Summary		
VIII.	Appendix — The Wagner-Meerwein Rearrangement		
IX.	Acknowledgments		
Refere	ences		