

Contents

Preface	xviii
Acknowledgments	xxi
Instructor and Student Resources	xxiii
Guide to Media Resources	XXV

PART | INTRODUCTION TO **BIOCHEMISTRY**

Life, Cells, and Thermodynamics

- The Origin of Life
 - 2 A. Biological Molecules Arose from Inorganic Materials
 - B. Complex Self-replicating Systems Evolved from Simple Molecules З

5

- **2** Cellular Architecture 5
 - A. Cells Carry Out Metabolic Reactions
 - B. There Are Two Types of Cells: Prokaryotes and **Eukaryotes** 7
 - C. Molecular Data Reveal Three Evolutionary Domains of Organisms 9
 - D. Organisms Continue to Evolve 11

3 Thermodynamics 11

- A. The First Law of Thermodynamics States That Energy Is Conserved 12
- B. The Second Law of Thermodynamics States That Entropy Tends to Increase 13
- C. The Free Energy Change Determines the Spontaneity of a Process 14
- D. Free Energy Changes Can Be Calculated from Equilibrium Concentrations 15
- E. Life Obeys the Laws of Thermodynamics 17

BOX 1-1 PATHWAYS OF DISCOVERY

Lynn Margulis and the Theory of Endosymbiosis 10

BOX 1-2 PERSPECTIVES IN BIOCHEMISTRY **Biochemical Conventions** 13

Physical and Chemical Properties of Water

Physical Properties of Water 23

- A. Water is a Polar Molecule 23
- B. Hydrophilic Substances Dissolve in Water 25
- C. The Hydrophobic Effect Causes Nonpolar Substances to Aggregate in Water 26

- D. Water Moves by Osmosis and Solutes Move by Diffusion 29
- **2** Chemical Properties of Water 30 30
 - A. Water Ionizes to Form H⁺ and OH⁻
 - B. Acids and Bases Alter the pH 32
 - C. Buffers Resist Changes in pH 34
- BOX 2-1 BIOCHEMISTRY IN HEALTH AND DISEASE The Blood Buffering System 36

PART II THE MOLECULES OF LIFE

3	Overview of DNA Structure,
	Function, and Engineering

1 Nucleotides 40

1

22

2

- 2 Introduction to Nucleic Acid Structure 43 A. Nucleic Acids Are Polymers of Nucleotides 43
 - B. The DNA Forms a Double Helix 44
 - C. RNA Is a Single-Stranded Nucleic Acid 47
- **3** Overview of Nucleic Acid Function 47 A. DNA Carries Genetic Information 48
 - B. Genes Direct Protein Synthesis 49
- 50 **4** Nucleic Acid Sequencing
 - A. Restriction Endonucleases Cleave DNA at Specific Sequences 51
 - B. Electrophoresis Separates Nucleic Acid According to Size 52
 - C. DNA Is Sequenced by the Chain-Terminator Method 53
 - D. Entire Genomes Have Been Sequenced 57
 - E. Evolution Results from Sequence Mutations 58

5 Manipulating DNA 59

- **A.** Cloned DNA Is an Amplified Copy 60
- B. DNA Libraries Are Collections of Cloned DNA 62
- C. DNA Is Amplified by the Polymerase Chain Reaction
- D. Recombinant DNA Technology Has Numerous Practical Applications 67

BOX 3-1 PATHWAYS OF DISCOVERY

56 Francis Collins and the Gene for Cystic Fibrosis

- BOX 3-2 PERSPECTIVES IN BIOCHEMISTRY
 - **DNA** Fingerprinting 66

BOX 3-3 PERSPECTIVES IN BIOCHEMISTRY

Ethical Aspects of Recombinant DNA Technology

70

65

Amino Acids: the Building **Blocks of Proteins**

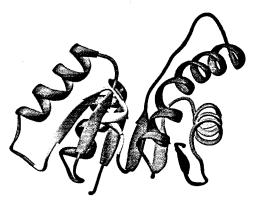
74

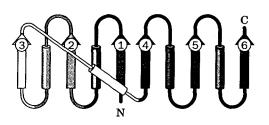
- **1** Amino Acid Structure 74
 - A. Amino Acids Are Dipolar lons 75
 - B. Peptide Bonds Link Amino Acids 78
 - C. Amino Acid Side Chains Are Nonpolar, Polar, or Charged 78
 - D. The pK Values of Ionizable Groups Depend on Nearby Groups 81 81
 - E. Amino Acid Names Are Abbreviated
- **2** Stereochemistry 82
- **3** Amino Acid Derivatives 86 A. Protein Side Chains May Be Modified 86 B. Some Amino Acids Are Biologically Active 86
- BOX 4-1 PATHWAYS OF DISCOVERY William C. Rose and the Discovery of Threonine 75
- BOX 4-2 PERSPECTIVES IN BIOCHEMISTRY The RS System 85
- BOX 4-3 PERSPECTIVES IN BIOCHEMISTRY Green Fluorescent Protein 87

Polypeptide Sequences, Analysis, and Evolution 91

- **1** Polypeptide Diversity 91
- **2** Protein Purification and Analysis 94 A. Purifying a Protein Requires a Strategy 94
 - B. Salting Out Separates Proteins by Their Solubility 97
 - C. Chromatography Involves Interaction with Mobile and Stationary Phases 98
 - D. Electrophoresis Separates Molecules According to Charge and Size 101

3 Protein Sequencing 104


- A. The First Step Is to Separate Subunits 104
- B. The Polypeptide Chains Are Cleaved 107
- C. Edman Degradation Removes a Peptide's First Amino Acid Residue 109
- D. Mass Spectrometry Determines the Molecular Masses of Peptides 110
- E. Reconstructed Protein Sequences Are Stored in Databases 112
- **4** Protein Evolution 114
 - A. Protein Sequences Reveal Evolutionary Relationships 114
 - B. Proteins Evolve by the Duplication of Genes or Gene Segments 117


BOX 5-1 PATHWAYS OF DISCOVERY

105 Frederick Sanger and Protein Sequencing

125 Protein Structure and Folding

- **1** Secondary Structure 127
 - A. The Planar Peptide Group Limits Polypeptide Conformations 127

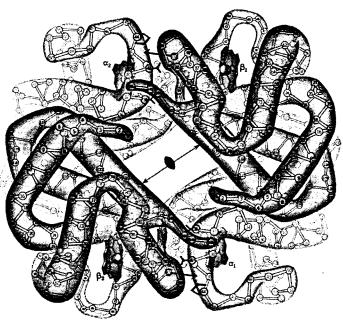
- **B.** The Most Common Regular Secondary Structures Are the α Helix and the B Sheet 129
- C. Fibrous Proteins Have Repeating Secondary Structures 134
- D. Most Proteins Include Nonrepetitive Structure 139
- **2** Tertiary Structure 140
 - A. Most Protein Structures Have Been Determined by X-Ray Crystallography or Nuclear Magnetic Resonance 141
 - B. Side Chain Location Varies with Polarity 145
 - C. Tertiary Structures Contain Combinations of Secondary Structure 146
 - D. Structure Is Conserved More than Sequence 150
 - E. Structural Bioinformatics Provides Tools for Storing. Visualizing, and Comparing Protein Structural Information 151
- **3** Quaternary Structure and Symmetry 154
- **4** Protein Stability 156
 - A. Proteins Are Stabilized by Several Forces 156
 - B. Proteins Can Undergo Denaturation and Renaturation 158

5 Protein Folding 161

- A. Proteins Follow Folding Pathways 161
- B. Molecular Chaperones Assist Protein Folding 165
- C. Some Diseases Are Caused by Protein Misfolding 168

BOX 6-1 PATHWAYS OF DISCOVERY

- Linus Pauling and Structural Biochemistry 130
- BOX 6-2 BIOCHEMISTRY IN HEALTH AND DISEASE Collagen Diseases 137
- BOX 6-3 PERSPECTIVES IN BIOCHEMISTRY Thermostable Proteins 159
- **BOX 6-4 PERSPECTIVES IN BIOCHEMISTRY** Protein Structure Prediction and Protein Design 163


Physiological Activities of Proteins

176

1 Oxygen Binding to Myoglobin

and Hemoglobin 177

- A. Myoglobin Is a Monomeric Oxygen-Binding Protein 177
- B. Hemoglobin Is a Tetramer with Two Conformations 181
- C. Oxygen Binds Cooperatively to Hemoglobin 184
- D. Hemoglobin's Two Conformations Exhibit Different Affinities for Oxygen 186
- E. Mutations May Alter Hemoglobin's Structure and Function 194
- **2** Muscle Contraction 197
 - A. Muscle Consists of Interdigitated Thick and Thin Filaments 198
 - B. Muscle Contraction Occurs When Myosin Heads Walk Up Thin Filaments 205
 - C. Actin Forms Microfilaments in Nonmuscle Cells 207
- **3** Antibodies 209
 - A. Antibodies Have Constant and Variable Regions 210
 - B. Antibodies Recognize a Huge Variety of Antigens 212
- **BOX 7-1 PERSPECTIVES IN BIOCHEMISTRY** Other Oxygen-Transport Proteins 181
- BOX 7-2 PATHWAYS OF DISCOVERY Max Perutz and the Structure and Function of Hemoglobin 182
- BOX 7-3 BIOCHEMISTRY IN HEALTH AND DISEASE High-Altitude Adaptation 192
- BOX 7-4 PATHWAYS OF DISCOVERY Hugh Huxley and the Sliding Filament Model 200
- BOX 7-5 PERSPECTIVES IN BIOCHEMISTRY Monoclonal Antibodies 213

Saccharide Chemistry

- 1 Monosaccharides 220
 - A. Monosaccharides Are Aldoses or Ketoses 220
 - B. Monosaccharides Vary in Configuration and Conformation 221
 - C. Sugars Can Be Modified and Covalently Linked 224
- **2** Polysaccharides 226
 - A. Lactose and Sucrose Are Disaccharides 227
 - B. Cellulose and Chitin Are Structural Polysaccharides 228
 - C. Starch and Glycogen Are Storage Polysaccharides 230
 - D. Glycosaminoglycans Form Highly Hydrated Gels 232
- **3** Glycoproteins 234
 - A. Proteoglycans Contain Glycosaminoglycans 234
 - B. Bacterial Cell Walls Are Made of Peptidoglycan 235
 - C. Many Eukaryotic Proteins Are Glycosylated 238
 - D. Oligosaccharides May Determine Glycoprotein Structure, Function, and Recognition 240
- BOX 8-1 BIOCHEMISTRY IN HEALTH AND DISEASE Lactose Intolerance 227
- BOX 8-2 PERSPECTIVES IN BIOCHEMISTRY Artificial Sweeteners 228
- BOX 8-3 BIOCHEMISTRY IN HEALTH AND DISEASE Peptidoglycan-Specific Antibiotics 238

Lipids, Bilayers, and Membranes

245

1 Lipid Classification 246

- A. The Properties of Fatty Acids Depend on Their Hydrocarbon Chains 246
- B. Triacylglycerols Contain Three Esterified Fatty Acids 248
- C. Glycerophospholipids Are Amphiphilic 249
- D. Sphingolipids Are Amino Alcohol Derivatives . 252
- E. Steroids Contain Four Fused Rings 254
- F. Other Lipids Perform a Variety of Metabolic Roles 257
- **2** Lipid Bilayers 260
 - A. Bilayer Formation Is Driven by the Hydrophobic Effect 260
 - B. Lipid Bilayers Have Fluidlike Properties 261
- **3** Membrane Proteins 263 A. Integral Membrane Proteins Interact with Hydrophobic Lipids 263
 - B. Lipid-Linked Proteins Are Anchored to the Bilayer 267
 - C. Peripheral Proteins Associate Loosely with Membranes 269
- **4** Membrane Structure and Assembly 269
 - A. The Fluid Mosaic Model Accounts for Lateral Diffusion 270
 - 272 B. The Membrane Skeleton Helps Define Cell Shape
 - C. Membrane Lipids Are Distributed Asymmetrically 274
 - D. The Secretory Pathway Generates Secreted and Transmembrane Proteins 278

© Irving Geis/HHMI

Contents

E. Intracellular Vesicles Transport Proteins 282 F. Proteins Mediate Vesicle Fusion 287

- BOX 9-1 BIOCHEMISTRY IN HEALTH AND DISEASE Lung Surfactant 250
- BOX 9-2 PATHWAYS OF DISCOVERY Richard Henderson and the Structure of Bacteriorhodopsin 266
- BOX 9-3 BIOCHEMISTRY IN HEALTH AND DISEASE Tetanus and Botulinum Toxins Specifically Cleave SNAREs 288

Passive and Active Transport 295

- **1** Thermodynamics of Transport 296
- 297 2 Passive-Mediated Transport
 - A. Ionophores Carry Ions across Membranes 297
 - **B.** Porins Contain β Barrels 298
 - C. Ion Channels Are Highly Selective 299
 - D. Aquaporins Mediate the Transmembrane Movement of Water 306
 - E. Transport Proteins Alternate between Two Conformations 307
- **3** Active Transport 311
 - A. The (Na⁺-K⁺)-ATPase Transports lons in Opposite Directions 311
 - B. The Ca²⁺-ATPase Pumps Ca²⁺ Out of the Cytosol 313
 - C. ABC Transporters Are Responsible for Drug Resistance 314
 - D. Active Transport May Be Driven by Ion Gradients 316
- BOX 10-1 PERSPECTIVES IN BIOCHEMISTRY **Gap** Junctions 308
- BOX 10-2 PERSPECTIVES IN BIOCHEMISTRY Differentiating 309 Mediated and Nonmediated Transport
- BOX 10-3 BIOCHEMISTRY IN HEALTH AND DISEASE The Action of Cardiac Glycosides 313

Glucose transport Na⁺ glucose symport Glucose uniport Glucose Glucose Glucose Na To capillaries Nat Intestinal lumen Na^{*} $ADP + P_i$ Microvilli Brush border cell (Na⁺-K⁺)-ATPase

PART III CATALYSIS AND SIGNALING

Mechanisms of Enzyme Action 322

- **1** General Properties of Enzymes 323
 - A. Enzymes Are Classified by the Type of Reaction They Catalyze 324
 - B. Enzymes Act on Specific Substrates 325
 - C. Some Enzymes Require Cofactors 326
- **2** Activation Energy and the Reaction Coordinate 328
- **3** Catalytic Mechanisms 330
 - A. Acid-Base Catalysis Occurs by Proton Transfer 331
 - B. Covalent Catalysis Usually Requires a Nucleophile 333
 - C. Metal Ion Cofactors Act as Catalysts 335
 - D. Catalysis Can Occur through Proximity and Orientation Effects 336
 - E. Enzymes Catalyze Reactions by Preferentially Binding the Transition State 338

339 **4** Lysozyme

- A. Lysozyme's Catalytic Site Was Identified through Model Building 340
- B. The Lysozyme Reaction Proceeds via a Covalent Intermediate 343

347 **5** Serine Proteases

- A. Active Site Residues Were Identified by Chemical 348 Labeling
- B. X-Ray Structures Provided Information about Catalysis, Substrate Specificity, and Evolution 348
- C. Serine Proteases Use Several Catalytic Mechanisms 352 357
- D. Zymogens Are Inactive Enzyme Precursors
- BOX 11-1 PERSPECTIVES IN BIOCHEMISTRY Effects of pH on Enzyme Activity 332
- BOX 11-2 PERSPECTIVES IN BIOCHEMISTRY Observing Enzyme Action by X-Ray Crystallography 342
- BOX 11-3 BIOCHEMISTRY IN HEALTH AND DISEASE Nerve Poisons 349
- BOX 11-4 BIOCHEMISTRY IN HEALTH AND DISEASE The Blood Coagulation Cascade 358
 - **Properties of Enzymes**
- **Reaction Kinetics** 364
 - A. Chemical Kinetics Is Described by Rate Equations 364

- B. Enzyme Kinetics Often Follows the Michaelis-Menten Equation 366
- **C.** Kinetic Data Can Provide Values of V_{max} and K_M 372
- D. Bisubstrate Reactions Follow One of Several Rate Equations 375
- **2** Enzyme Inhibition 377
 - A. Competitive Inhibition Involves Inhibitor Binding at an Enzyme's Substrate Binding Site 377

- B. Uncompetitive Inhibition Involves Inhibitor Binding to the Enzyme–Substrate Complex 381
- **C.** Mixed Inhibition Involves Inhibitor Binding to Both the Free Enzyme and the Enzyme–Substrate Complex 382

3 Control of Enzyme Activity 386

- A. Allosteric Control Involves Binding at a Site Other Than the Active Site 386
- B. Control by Covalent Modification Often Involves Protein Phosphorylation 390
- **4** Drug Design 394
 - A. Drug Discovery Employs a Variety of Techniques 394
 - B. A Drug's Bioavailability Depends on How It Is Absorbed and Transported in the Body 396
 - C. Clinical Trials Test for Efficacy and Safety 396
 - Cytochromes P450 Are Often Implicated in Adverse Drug Reactions 398

367

- BOX 12-1 PERSPECTIVES IN BIOCHEMISTRY
 - Isotopic Labeling
- BOX 12-2 **PATHWAYS OF DISCOVERY** J.B.S. Haldane and Enzyme Action 369
- BOX 12-3 **PERSPECTIVES IN BIOCHEMISTRY** Kinetics and Transition State Theory 372
- BOX 12-4 **BIOCHEMISTRY IN HEALTH AND DISEASE** HIV Enzyme Inhibitors 384

B Hormones and Signal Transduction

- **1** Hormones 406
 - A. Pancreatic Islet Hormones Control Fuel Metabolism 407
 - **B.** Epinephrine and Norepinephrine Prepare the Body for Action 409
 - **C.** Steroid Hormones Regulate a Wide Variety of Metabolic and Sexual Processes 410
 - **D.** Growth Hormone Binds to Receptors in Muscle, Bone, and Cartilage 411

2 Receptor Tyrosine Kinases 412

- Receptor Tyrosine Kinases Transmit Signals across the Cell Membrane 413
- B. Kinase Cascades Relay Signals to the Nucleus 416
- C. Some Receptors Are Associated with Nonreceptor Tyrosine Kinases 422
- D. Protein Phosphatases Are Signaling Proteins in Their Own Right 425

3 Heterotrimeric G Proteins 428

- A. G Protein–Coupled Receptors Contain Seven Transmembrane Helices 429
- B. Heterotrimeric G Proteins Dissociate on Activation 430
- C. Adenylate Cyclase Synthesizes cAMP to Activate Protein Kinase A 432
- **D.** Phosphodiesterases Limit Second Messenger Activity 435

4 The Phosphoinositide Pathway 436

- **A.** Ligand Binding Results in the Cytoplasmic Release of the Second Messengers IP_3 and Ca^{2+} 437
- **B.** Calmodulin Is a Ca²⁺-Activated Switch 438

- **C.** DAG Is a Lipid-Soluble Second Messenger That Activates Protein Kinase C 440
- D. Epilog: Complex Systems Have Emergent Properties 442
- BOX 13-1 **PATHWAYS OF DISCOVERY** Rosalyn Yalow and the Radioimmunoassay (RIA) 408
- BOX 13-2 **PERSPECTIVES IN BIOCHEMISTRY** Receptor–Ligand Binding Can Be Quantitated 414
- BOX 13-3 **BIOCHEMISTRY IN HEALTH AND DISEASE** Oncogenes and Cancer 421
- BOX 13-4 **BIOCHEMISTRY IN HEALTH AND DISEASE** Drugs and Toxins That Affect Cell Signaling 435
- BOX 13-5 **BIOCHEMISTRY IN HEALTH AND DISEASE** Anthrax 444

PART IV METABOLIC REACTIONS

14 Bioenergetics

405

448

460

- **1** Overview of Metabolism 449
 - A. Nutrition Involves Food Intake and Use 449
 - **B.** Vitamins and Minerals Assist Metabolic Reactions 450
 - C. Metabolic Pathways Consist of Series of Enzymatic Reactions 451
 - D. Thermodynamics Dictates the Direction and Regulatory Capacity of Metabolic Pathways 455
 - E. Metabolic Flux Must Be Controlled 457
- **2** "High-Energy" Compounds 459
 - A. ATP Has a High Phosphoryl Group-Transfer Potential 460
 - B. Coupled Reactions Drive Endergonic Processes 462C. Some Other Phosphorylated Compounds Have High
 - Phosphoryl Group-Transfer Potentials 464
 - **D.** Thioesters Are Energy-Rich Compounds 468
- **3** Oxidation–Reduction Reactions 469
 - A. NAD⁺ and FAD Are Electron Carriers 469
 B. The Nernst Equation Describes Oxidation–Reduction
 - Reactions 470
 - **C.** Spontaneity Can Be Determined by Measuring Reduction Potential Differences 472

4 Experimental Approaches to the Study of

Metabolism 475

- A. Labeled Metabolites Can Be Traced 475
- B. Studying Metabolic Pathways Often Involves Perturbing the System 477
- C. Systems Biology Has Entered the Study of Metabolism 477
- BOX 14-1 **PERSPECTIVES IN BIOCHEMISTRY** Oxidation States of Carbon 453
- BOX 14-2 **PERSPECTIVES IN BIOCHEMISTRY** Mapping Metabolic Pathways 454
- BOX 14-3 **PATHWAYS OF DISCOVERY** Fritz Lipmann and "High-Energy" Compounds
- BOX 14-4 PERSPECTIVES IN BIOCHEMISTRY

ATP and ΔG 462

Glycolysis and the Pentose Phosphate Pathway

- **1** Overview of Glycolysis 486
- **2** The Reactions of Glycolysis 489
 - A. Hexokinase Uses the First ATP 489
 - B. Phosphoglucose Isomerase Converts Glucose-6-Phosphate to Fructose-6-Phosphate 490
 - C. Phosphofructokinase Uses the Second ATP 491
 - D. Aldolase Converts a 6-Carbon Compound to Two 3-Carbon Compounds 492
 - **E.** Triose Phosphate Isomerase Interconverts Dihydroxyacetone Phosphate and Glyceraldehyde-3-Phosphate 494
 - F. Glyceraldehyde-3-Phosphate Dehydrogenase Forms the First "High-Energy" Intermediate 497
 - G. Phosphoglycerate Kinase Generates the First ATP 499
 - Phosphoglycerate Mutase Interconverts 3-Phosphoglycerate and 2-Phosphoglycerate
 499
 - I. Enolase Forms the Second "High-Energy" Intermediate 500
 - J. Pyruvate Kinase Generates the Second ATP 501
- 3 Fermentation: The Anaerobic Fate of

Pyruvate 504

- A. Homolactic Fermentation Converts Pyruvate to Lactate 505
- **B.** Alcoholic Fermentation Converts Pyruvate to Ethanol and CO₂ 506
- C. Fermentation Is Energetically Favorable 509
- **4** Regulation of Glycolysis 510
 - A. Phosphofructokinase Is the Major Flux-Controlling Enzyme of Glycolysis in Muscle 511
 - B. Substrate Cycling Fine-Tunes Flux Control 514
- 5 Metabolism of Hexoses Other than Glucose 516 A. Fructose Is Converted to Fructose-6-Phosphate or
 - Glyceraldehyde-3-Phosphate 516 **B.** Galactose Is Converted to Glucose-6-Phosphate
 - **B.** Galactose Is Converted to Glucose-6-Phosphate 518 **C.** Mannose Is Converted to Fructose-6-Phosphate 520
- **6** The Pentose Phosphate Pathway 520
 - **A.** Oxidative Reactions Produce NADPH in Stage 1 522
 - B. Isomerization and Epimerization of Ribulose-5-Phosphate Occur in Stage 2 523
 - **C.** Stage 3 Involves Carbon–Carbon Bond Cleavage and Formation 523
 - D. The Pentose Phosphate Pathway Must Be Regulated 524

BOX 15-1 PATHWAYS OF DISCOVERY

Otto Warburg and Studies of Metabolism 488

510

- BOX 15-2 **PERSPECTIVES IN BIOCHEMISTRY** Synthesis of 2,3-Bisphosphoglycerate in Erythrocytes and Its Effect on the Oxygen Carrying Capacity of the Blood 502
- BOX 15-3 **PERSPECTIVES IN BIOCHEMISTRY** Glycolytic ATP Production in Muscle
- BOX 15-4 **BIOCHEMISTRY IN HEALTH AND DISEASE** Glucose-6-Phosphate Dehydrogenase Deficiency 526

485

6 Additional Pathways in Carbohydrate Metabolism

- **1** Glycogen Breakdown 532
 - A. Glycogen Phosphorylase Degrades Glycogen to Glucose-1-Phosphate 534
 - **B.** Glycogen Debranching Enzyme Acts as a Glucosyltransferase 536
 - C. Phosphoglucomutase Interconverts Glucose-1-Phosphate and Glucose-6-Phosphate 537

2 Glycogen Synthesis 540

- A. UDP–Glucose Pyrophosphorylase Activates Glucosyl Units 540
- B. Glycogen Synthase Extends Glycogen Chains 541
- C. Glycogen Branching Enzyme Transfers Seven-Residue Glycogen Segments 543

3 Control of Glycogen Metabolism 545

- A. Glycogen Phosphorylase and Glycogen Synthase Are Under Allosteric Control 545
- B. Glycogen Phosphorylase and Glycogen Synthase Undergo Control by Covalent Modification 545
 C. Glycogen Metabolism Is Subject to Hormonal Control
 - 550

4 Gluconeogenesis 552

- A. Pyruvate is Converted to Phosphoenolpyruvate in Two Steps 554
- **B.** Hydrolytic Reactions Bypass Irreversible Glycolytic Reactions 557
- C. Gluconeogenesis and Glycolysis Are Independently Regulated 558

5 Other Carbohydrate Biosynthetic Pathways 560

BOX 16-1 PATHWAYS OF DISCOVERY

Carl and Gerty Cori and Glucose Metabolism 533

- BOX 16-2 **BIOCHEMISTRY IN HEALTH AND DISEASE** Glycogen Storage Diseases 538
- BOX 16-3 **PERSPECTIVES IN BIOCHEMISTRY** Optimizing Glycogen Structure 544
- BOX 16-4 **PERSPECTIVES IN BIOCHEMISTRY** Lactose Synthesis 560

The Citric Acid Cycle

566

570

- **1** Overview of the Citric Acid Cycle 567
- 2 Synthesis of Acetyl-Coenzyme A 570 A. Pyruvate Dehydrogenase Is a Multienzyme Complex
 - B. The Pyruvate Dehydrogenase Complex Catalyzes Five Reactions 572
- B Enzymes of the Citric Acid Cycle 576
 A. Citrate Synthase Joins an Acetyl Group to Oxaloacetate 577
 - **B.** Aconitase Interconverts Citrate and Isocitrate 578
 - **C.** NAD⁺-Dependent Isocitrate Dehydrogenase Releases CO₂ 579

- **D.** α-Ketoglutarate Dehydrogenase Resembles Pyruvate Dehydrogenase 580
- E. Succinyl-CoA Synthetase Produces GTP 580
- F. Succinate Dehydrogenase Generates FADH₂ 582
- G. Fumarase Produces Malate 583
- H. Malate Dehydrogenase Regenerates Oxaloacetate 583
- **4** Regulation of the Citric Acid Cycle 583
 - A. Pyruvate Dehydrogenase Is Regulated by Product Inhibition and Covalent Modification 585
 - **B.** Three Enzymes Control the Rate of the Citric Acid Cycle 585

5 Reactions Related to the Citric Acid Cycle 588 **A.** Other Pathways Use Citric Acid Cycle Intermediates 588

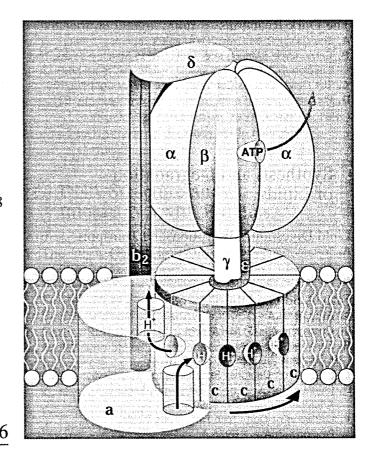
- A. Other Pathways Use Citric Acid Cycle Intermediates
 B. Some Reactions Replenish Citric Acid Cycle Intermediates 589
- **C.** The Glyoxylate Cycle Shares Some Steps with the Citric Acid Cycle 590
- BOX 17-1 **PATHWAYS OF DISCOVERY** Hans Krebs and the Citric Acid Cycle 569
- BOX 17-2 BIOCHEMISTRY IN HEALTH AND DISEASE Arsenic Poisoning 576
- BOX 17-3 **PERSPECTIVES IN BIOCHEMISTRY** Evolution of the Citric Acid Cycle 592

18

Mitochondrial ATP Synthesis 596

- **1** The Mitochondrion 597
 - A. Mitochondria Contain a Highly Folded Inner Membrane 597
 - B. lons and Metabolites Enter Mitochondria via Transporters 599

2 Electron Transport 600


- A. Electron Transport Is an Exergonic Process 601
- B. Electron Carriers Operate in Sequence 602
- C. Complex 1 Accepts Electrons from NADH 604
- D. Complex II Contributes Electrons to Coenzyme Q 609
- **E.** Complex III Translocates Protons via the Q Cycle 611
- F. Complex IV Reduces Oxygen to Water 615

3 Oxidative Phosphorylation 618

- A. The Chemiosmotic Theory Links Electron Transport to ATP Synthesis 618
- B. ATP Synthase Is Driven by the Flow of Protons 622
- **C.** The P/O Ratio Relates the Amount of ATP Synthesized to the Amount of Oxygen Reduced 629
- D. Oxidative Phosphorylation Can Be Uncoupled from Electron Transport 630

4 Control of Oxidative Metabolism 631

- A. The Rate of Oxidative Phosphorylation Depends on the ATP and NADH Concentrations 631
- B. Aerobic Metabolism Has Some Disadvantages 634
- BOX 18-1 **PERSPECTIVES IN BIOCHEMISTRY** Cytochromes Are Electron-Transport Heme Proteins 610

BOX 18-2 PATHWAYS OF DISCOVERY

Peter Mitchell and the Chemiosmotic Theory 619

- BOX 18-3 **PERSPECTIVES IN BIOCHEMISTRY** Bacterial Electron Transport and Oxidative Phosphorylation 621
- BOX 18-4 **PERSPECTIVES IN BIOCHEMISTRY** Uncoupling in Brown Adipose Tissue Generates Heat 632
- BOX 18-5 **BIOCHEMISTRY IN HEALTH AND DISEASE** Oxygen Deprivation in Heart Attack and Stroke 635

9 Photosynthesis

640

1 Chloroplasts 641

- A. The Light Reactions Take Place in the Thylakoid Membrane 641
- B. Pigment Molecules Absorb Light 643
- **2** The Light Reactions 645
 - A. Light Energy Is Transformed to Chemical Energy 645
 - B. Electron Transport in Photosynthetic Bacteria Follows a Circular Path 647
 - **C.** Two-Center Electron Transport Is a Linear Pathway That Produces O₂ and NADPH 650
 - D. The Proton Gradient Drives ATP Synthesis by Photophosphorylation 661

xiv Contents ł

- **3** The Dark Reactions 663
 - A. The Calvin Cycle Fixes CO₂ 663
 - B. Calvin Cycle Products Are Converted to Starch, Sucrose, and Cellulose 668
 - C. The Calvin Cycle Is Controlled Indirectly by Light 670
 - **D.** Photorespiration Competes with Photosynthesis 671

BOX 19-1 PERSPECTIVES IN BIOCHEMISTRY Segregation of PSI and PSII 662

Synthesis and Degradation of Lipids

- 1 Lipid Digestion, Absorption, and Transport 678 A. Triacylglycerols Are Digested before They Are
 - Absorbed 678
 - B. Lipids Are Transported as Lipoproteins 680
- **2** Fatty Acid Oxidation 685
 - A. Fatty Acids Are Activated by Their Attachment to Coenzyme A 686
 - B. Carnitine Carries Acyl Groups across the Mitochondrial Membrane 686
 - C. B Oxidation Degrades Fatty Acids to Acetyl-CoA 688
 - D. Oxidation of Unsaturated Fatty Acids Requires Additional Enzymes 690
 - E. Oxidation of Odd-Chain Fatty Acids Yields Propionyl-CoA 692
 - F. Peroxisomal B Oxidation Differs from Mitochondrial **β** Oxidation 698
- **3** Ketone Bodies 698

4 Fatty Acid Biosynthesis 701

- A. Mitochondrial Acetyl-CoA Must Be Transported into the Cytosol 701
- B. Acetyl-CoA Carboxylase Produces Malonyl-CoA 702
- C. Fatty Acid Synthase Catalyzes Seven Reactions 703
- D. Fatty Acids May Be Elongated and Desaturated 707
- E. Fatty Acids Are Esterified to Form Triacylglycerols 711
- **5** Regulation of Fatty Acid Metabolism 711

6 Synthesis of Other Lipids 714

- A. Glycerophospholipids Are Built from Intermediates of Triacylolycerol Synthesis 714
- B. Sphingolipids Are Built from Palmitoyl-CoA and Serine 717
- C. C₂₀ Fatty Acids Are the Precursors of Prostaglandins 718

721

7 Cholesterol Metabolism

- A. Cholesterol Is Synthesized from Acetyl-CoA 721
- B. HMG-CoA Reductase Controls the Rate of Cholesterol Synthesis 725
- C. Abnormal Cholesterol Transport Leads to Atherosclerosis 727
- BOX 20-1 BIOCHEMISTRY IN HEALTH AND DISEASE Vitamin B₁₂ Deficiency 696
- BOX 20-2 PATHWAYS OF DISCOVERY Dorothy Crowfoot Hodgkin and the Structure of Vitamin B₁₂ 697
- BOX 20-3 PERSPECTIVES IN BIOCHEMISTRY Triclosan: An Inhibitor of Fatty Acid Synthesis 708

BOX 20-4 BIOCHEMISTRY IN HEALTH AND DISEASE

Sphingolipid Degradation and Lipid Storage Diseases 720

Synthesis and Degradation of Amino Acids 732

1 Protein Degradation 732 A. Lysosomes Degrade Many Proteins

- 732 B. Ubiquitin Marks Proteins for Degradation
- 733 C. The Proteasome Unfolds and Hydrolyzes Ubiquitinated Polypeptides 734

2 Amino Acid Deamination 738

- A. Transaminases Use PLP to Transfer Amino Groups 738
- B. Glutamate Can Be Oxidatively Deaminated 742
- **3** The Urea Cycle 743 A. Five Enzymes Carry out the Urea Cycle 743 **B.** The Urea Cycle Is Regulated by Substrate Availability 747
- **4** Breakdown of Amino Acids 747 A. Alanine, Cysteine, Glycine, Serine, and Threonine Are Degraded to Pyruvate 748
 - B. Asparagine and Aspartate Are Degraded to Oxaloacetate 751
 - C. Arginine, Glutamate, Glutamine, Histidine, and Proline Are Degraded to α -Ketoglutarate 751
 - D. Isoleucine, Methionine, and Valine Are Degraded to Succinyl-CoA 753
 - E. Leucine and Lysine Are Degraded Only to Acetyl-CoA and/or Acetoacetate 758
 - F. Tryptophan Is Degraded to Alanine and Acetoacetate 758
 - G. Phenylalanine and Tyrosine Are Degraded to Fumarate and Acetoacetate 760

5 Amino Acid Biosynthesis 763

- A. Nonessential Amino Acids Are Synthesized from Common Metabolites 764
- B. Plants and Microorganisms Synthesize the Essential Amino Acids 769

6 Other Products of Amino Acid Metabolism 774

775

- A. Heme Is Synthesized from Glycine and Succinyl-CoA B. Amino Acids Are Precursors of Physiologically Active Amines 780
- C. Nitric Oxide Is Derived from Arginine 781

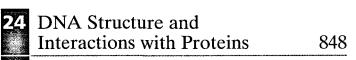
7 Nitrogen Fixation 782

- A. Nitrogenase Reduces N₂ to NH₃ 783
- B. Fixed Nitrogen Is Assimilated into Biological Molecules 786
- BOX 21-1 BIOCHEMISTRY IN HEALTH AND DISEASE
 - Homocysteine, a Marker of Disease 755
- BOX 21-2 BIOCHEMISTRY IN HEALTH AND DISEASE Phenylketonuria and Alcaptonuria Result from Defects in Phenylalanine Degradation 762
- BOX 21-3 BIOCHEMISTRY IN HEALTH AND DISEASE The Porphyrias 778

2 Regulation of Fuel Metabolism 791

- **1** Organ Specialization 792
 - A. The Brain Requires a Steady Supply of Glucose 793
 - **B.** Muscle Utilizes Glucose, Fatty Acids, and Ketone Bodies 794
 - C. Adipose Tissue Stores and Releases Fatty Acids and Hormones 795
 - D. Liver Is the Body's Central Metabolic Clearinghouse 796
 - E. Kidney Filters Wastes and Maintains Blood pH 798
 - F. Blood Transports Metabolites in Interorgan Metabolic
 Pathways 798
- **2** Hormonal Control of Fuel Metabolism 799
- **3** Metabolic Homeostasis: The Regulation of Energy
 - Metabolism, Appetite, and Body Weight 804
 - A. AMP-Dependent Protein Kinase Is the Cell's Fuel Gauge 804
 - **B.** Adiponectin Regulates AMPK Activity 806
 - C. Leptin Is a Satiety Hormone 806
 - D. Ghrelin and PYY₃₋₃₆ Act as Short-Term Regulators of Appetite 807
 - **E.** Energy Expenditure Can Be Controlled by Adaptive Thermogenesis 808
- **4** Disturbances in Fuel Metabolism 809
 - **A.** Starvation Leads to Metabolic Adjustments 809
 - B. Diabetes Mellitus Is Characterized by High Blood Glucose Levels 811
 - C. Obesity Is Usually Caused by Excessive Food Intake 814
- BOX 22-1 **PATHWAYS OF DISCOVERY** Frederick Banting and Charles Best and the Discovery of Insulin 812

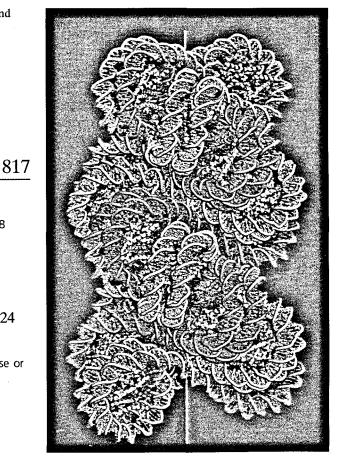
PART V NUCLEIC ACID METABOLISM


23	ľ
	Ι

Nucleotide Synthesis and Degradation

- **1** Synthesis of Purine Ribonucleotides 818
 - A. Purine Synthesis Yields Inosine Monophosphate 818
 - **B.** IMP Is Converted to Adenine and Guanine Ribonucleotides 821
 - C. Purine Nucleotide Biosynthesis Is Regulated at Several Steps 822
 - D. Purines Can Be Salvaged 823
- **2** Synthesis of Pyrimidine Ribonucleotides 824
 - A. UMP Is Synthesized in Six Steps 824
 - **B.** UMP Is Converted to UTP and CTP 826
 - C. Pyrimidine Nucleotide Biosynthesis Is Regulated at ATCase or Carbamoyl Phosphate Synthetase II 827
- **3** Formation of Deoxyribonucleotides 828
 - A. Ribonucleotide Reductase Converts Ribonucleotides to Deoxyribonucleotides
 828
 - B. dUMP Is Methylated to Form Thymine 834

- **4** Nucleotide Degradation 839
 - A. Purine Catabolism Yields Uric Acid 839
 - B. Some Animals Degrade Uric Acid 842
 - **C.** Pyrimidines Are Broken Down to Malonyl-CoA and Methylmalonyl-CoA 845
- BOX 23-1 **BIOCHEMISTRY IN HEALTH AND DISEASE** Inhibition of Thymidylate Synthesis in Cancer Therapy 838
- BOX 23-2 PATHWAYS OF DISCOVERY


Gertrude Elion and Purine Derivatives 844

855

1 The DNA Helix 849

- A. DNA Can Adopt Different Conformations 849
- B. DNA Has Limited Flexibility
- C. DNA Can Be Supercoiled 857
- D. Topoisomerases Alter DNA Supercoiling 859
- 2 Forces Stabilizing Nucleic Acid Structures864A. DNA Can Undergo Denaturation and Renaturation864
 - **B.** Nucleic Acids Are Stabilized by Base Pairing, Stacking, and Ionic Interactions 866
 - C. RNA Structures Are Highly Variable 868
- **3** Fractionation of Nucleic Acids 872 **A.** Nucleic Acids Can Be Purified by Chromatography 872
 - **B.** Electrophoresis Separates Nucleic Acids by Size 872

XVI Contents

- **4** DNA–Protein Interactions 874
 - A. Restriction Endonucleases Distort DNA on Binding 875
 - B. Prokaryotic Repressors Often Include a DNA-Binding Helix 876
 - C. Eukaryotic Transcription Factors May Include Zinc Fingers or Leucine Zippers 879
- **5** Eukaryotic Chromosome Structure 883
 - A. Histones Are Positively Charged 884
 - **B.** DNA Coils around Histones to Form Nucleosomes 884
 - C. Chromatin Forms Higher-Order Structures 887
- BOX 24-1 **PATHWAYS OF DISCOVERY** Rosalind Franklin and the Structure of DNA
- Rosalind Franklin and the Structure of DNA 850 BOX 24-2 **BIOCHEMISTRY IN HEALTH AND DISEASE**
 - Inhibitors of Topoisomerases as Antibiotics and Anticancer Chemotherapeutic Agents 865
- BOX 24-3 **PERSPECTIVES IN BIOCHEMISTRY** The RNA World 871

25 DNA Synthesis and Repair 893

1 Overview of DNA Replication 894

2 Prokaryotic DNA Replication 896

- A. DNA Polymerases Add the Correctly Paired Nucleotide 896
- B. Replication Initiation Requires Helicase and Primase 903
- C. The Leading and Lagging Strands Are Synthesized Simultaneously 904
- D. Replication Terminates at Specific Sites 908
- E. DNA Is Replicated with High Fidelity 909
- **3** Eukaryotic DNA Replication 910
 - A. Eukaryotes Use Several DNA Polymerases 910
 - B. Eukaryotic DNA Is Replicated from Multiple Origins

911

C. Telomerase Extends Chromosome Ends 914

4 DNA Damage 916

- A. Environmental and Chemical Agents Generate Mutations 916
- B. Many Mutagens Are Carcinogens 919

5 DNA Repair 920

- A. Some Damage Can Be Directly Reversed 920
- B. Base Excision Repair Requires a Glycosylase 921
- **C.** Nucleotide Excision Repair Removes a Segment of a DNA Strand 923
- D. Mismatch Repair Corrects Replication Errors 924
- E. Some DNA Repair Mechanisms Introduce Errors 925

6 Recombination 926

- A. Homologous Recombination Involves Several Protein Complexes 926
- B. DNA Can Be Repaired by Recombination 932
- C. Transposition Rearranges Segments of DNA 934

BOX 25-1 PATHWAYS OF DISCOVERY

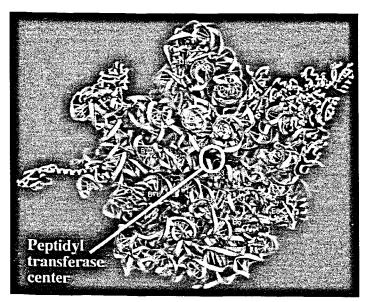
Arthur Kornberg and DNA Polymerase I 898

- BOX 25-2 **PERSPECTIVES IN BIOCHEMISTRY** Reverse Transcriptase 912
- BOX 25-3 **BIOCHEMISTRY IN HEALTH AND DISEASE** Telomerase, Aging, and Cancer 915

- BOX 25-4 **PERSPECTIVES IN BIOCHEMISTRY** DNA Methylation 918
- BOX 25-5 **PERSPECTIVES IN BIOCHEMISTRY** Why Doesn't DNA Contain Uracil? 921

26 RNA Metabolism

- **1** Prokaryotic RNA Transcription 943
 - A. RNA Polymerase Resembles Other Polymerases 943
 - B. Transcription Is Initiated at a Promoter 943
 - C. The RNA Chain Grows from the 5' to 3' End 947
 - **D.** Transcription Terminates at Specific Sites 950
- **2** Transcription in Eukaryotes 952
 - A. Eukaryotes Have Several RNA Polymerases 953B. Each Polymerase Recognizes a Different Type of
 - Promoter 958 C. Transcription Factors Are Required to Initiate
 - C. Transcription Factors Are Required to Initiate Transcription 960
- **3** Posttranscriptional Processing 965
 - **A.** Messenger RNAs Undergo 5' Capping, Addition of a 3' Tail, and Splicing 965
 - B. Ribosomal RNA Precursors May Be Cleaved, Modified, and Spliced 976
 - C. Transfer RNAs Are Processed by Nucleotide Removal, Addition, and Modification 980
- BOX 26-1 **PERSPECTIVES IN BIOCHEMISTRY** Collisions between DNA Polymerase and RNA Polymerase 949
- BOX 26-2 **BIOCHEMISTRY IN HEALTH AND DISEASE** Inhibitors of Transcription 954
- BOX 26-3 **PATHWAYS OF DISCOVERY** Richard Roberts and Phillip Sharp and the Discovery of Introns 968


The Genetic Code and Translation

985

- The Genetic Code 986
 - A. Codons Are Triplets That Are Read Sequentially 986
 - B. The Genetic Code Was Systematically Deciphered 987
 - C. The Genetic Code Is Degenerate and Nonrandom 988
- 2 Transfer RNA and Its Aminoacylation 991 A. All tRNAs Have a Similar Structure 991
 - B. Aminoacyl-tRNA Synthetases Attach Amino Acids to tRNAs 994
 - C. A tRNA May Recognize More than One Codon 998

3 Ribosomes 1000

- A. The Prokaryotic Ribosome Consists of Two Subunits 1001 B. The Eukaryotic Ribosome Is Larger and More
- Complex 1007
- 4 Translation 1008
 - A. Chain Initiation Requires an Initiator tRNA and Initiation Factors 1010
 - B. The Ribosome Decodes the mRNA, Catalyzes Peptide Bond Formation, Then Moves to the Next Codon 1014 C. Release Factors Terminate Translation 1026
- **5** Posttranslational Processing 1028
 - A. Ribosome-Associated Chaperones Help Proteins Fold 1028 B. Newly Synthesized Proteins May Be Covalently
 - Modified 1029
- BOX 27-1 PERSPECTIVES IN BIOCHEMISTRY
- Evolution of the Genetic Code 990 **BOX 27-2 PERSPECTIVES IN BIOCHEMISTRY**
 - 1000 Expanding the Genetic Code
- BOX 27-3 BIOCHEMISTRY IN HEALTH AND DISEASE The Effects of Antibiotics on Protein Synthesis 1024

Gene Expression in

Prokaryotes and Eukaryotes 1037

- **1** Genome Organization 1038
 - A. Gene Number Varies among Organisms 1038
 - B. Some Genes Occur in Clusters 1042
 - C. Eukaryotic Genomes Contain Repetitive DNA Sequences 1043
- 1046 2 Regulation of Prokaryotic Gene Expression
 - A. The lac Operon Is Controlled by a Repressor 1046
 - B. Catabolite-Repressed Operons Can Be Activated 1050
 - C. Attenuation Regulates Transcription Termination 1051
 - D. Riboswitches Are Metabolite-Sensing RNAs 1054
- 1055 **3** Regulation of Eukaryotic Gene Expression 1055
 - A. Chromatin Structure Influences Gene Expression B. Eukaryotes Contain Multiple Transcriptional Activators 1067
 - C. Posttranscriptional Control Mechanisms Include RNA Degradation 1073
 - D. Antibody Diversity Results from Somatic Recombination and Hypermutation 1077
- **4** The Cell Cycle, Cancer, and Apoptosis 1081
 - A. Progress through the Cell Cycle Is Tightly Regulated 1081
 - B. Tumor Suppressors Prevent Cancer 1084
 - C. Apoptosis Is an Orderly Process 1086
 - D. Development Has a Molecular Basis 1090
- BOX 28-1 BIOCHEMISTRY IN HEALTH AND DISEASE **Trinucleotide Repeat Diseases** 1044
- BOX 28-2 PERSPECTIVES IN BIOCHEMISTRY X Chromosome Inactivation 1057
- BOX 28-3 PERSPECTIVES IN BIOCHEMISTRY Nonsense-Mediated Decay 1074

APPENDICES

Solutions to Problems	SP-1
Glossary	G-1
Index	I-1