Contents of Part A

I. Theoretical and Biophysical Approaches

1.	The Structure of Biological Membranes (with 4 Figures) N.A. WALKER	3
	 Introduction	3 4 5
2.	Water Relations of Plant Cells (with 6 Figures) J. DAINTY.	12
	 Introduction Water Potential The "Static" Water Relations of a Single Plant Cell Transport of Water across Cell Membranes Conclusion 	12 12 16 22 32
3.	Membrane Transport: Theoretical Background (with 2 Figures) N.A. WALKER	36
	 Introduction	36 37 37 42 46
4.	Electrical Properties of Plant Cells: Methods and Findings (with 9 Figures) G.P. FINDLAY and A.B. HOPE	53
	 Methods 1.1 The Potential Difference 1.2 What an Inserted Microelectrode Actually Measures 1.3 Measurement of Membrane Resistance 1.4 The Control of Membrane Potential Difference by Voltage 	53 53 57 59
	Clamping	62 63 66 66 68

	2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Membrane Capacitance	70 70 77 78 80 82 84 85
5.	Measur N.A 1. Intro 2. The 3. The 4. Prace 5. Apr	rement of Fluxes across Membranes (with 19 Figures) WALKER and M.G. PITMAN	93 93 94 103 107 112
	6. Con	α clusions β	124

II. Particular Cell Systems

6.	Transport in Algal Cells (with 8 Figures) J.A. RAVEN J.A. RAVEN
	1. Introduction
	2. Algal Structure in Relation to Transport
	3. Elemental Composition of Algae
	4. Experimental Materials and Methods
	5. Electrochemical Driving Forces in Algal Cells and Ionic Contents 140
	6. Fluxes of Electrolytes
	7. Transport of Non-Electrolytes
	8. Conclusions and Evolutionary Speculations
7.	Transport in Fungal Cells (with 13 Figures) D.H. JENNINGS
	1. Introduction
	2. Potassium-Hydrogen or -Sodium Exchange System: Neurospora crassa
	and Saccharomyces cerevisiae
	3. Ammonium and Methyl Ammonium Transport
	4. Bivalent Cation Transport: Saccharomyces cerevisiae
	5. Phosphate Transport
	6. Transport of Sulfate and Other Sulfur Compounds
	7. Amino Acid Transport
	8. Monosaccharide Transport
	9. Uptake of Di- and Trisaccharides
	10. Ion and Proton Movements Accompanying Organic Solute Absorption 220

••••
229
230
234
240
243
244

III. Regulation, Metabolism and Transport

9.	Transport and Energy (with 1 Figure) U. LÜTTGE and M.G. PITMAN	251
		231
	 Introduction Particular Energy Source for Particular Transport Mechanism Coupling between Sources of Metabolic Energy and Transport Mech- 	251 252
	anisms	253 256
10.	ATPases Associated with Membranes of Plant Cells (with 10 Figures)	20
	1.K. HODGES	200
	1. Introduction	260
	2. Difficulties in Establishing a Role for ATPases in Ion Transport	261
	3. ATPase Activity of Soluble Fractions.	262
	4. ATPase Activity of Membrane Fractions	263
	5. Evidence for ATPase Involvement in Cation Absorption by Roots	278
	6. Summary	281
11.	Negative Feedback Regulation of Transport in Cells. The Maintenance of Turgor, Volume and Nutrient Supply (with 5 Figures)	
	W.J. CRAM	284
	1. Introduction	284
	2. Some Elementary Properties of Control Systems	285
	3. Experimental Observations	289
	3.1 Control of the Total Number of Osmotically Active Particles in	
	Cells	289
	3.2 Control of the Uptake and Accumulation of Specific Substances in Plant Cells	302
	4. Mechanisms of Negative Feedback Regulation	306
	5. Interrelations between Systems Regulating Transport	307

12.	H ⁺ Transport and Regulation of Cell pH (with 9 Figures) F.A. SMITH and J.A. RAVEN
	1. Introduction 317 2. Effects of Metabolism on the pH of Cells and Their Surroundings 317 3. Biophysical Implications of H ⁺ Transport 323 4. Models for H ⁺ Transport 326 5. H ⁺ Fluxes and the Regulation of Solute Accumulation 331 6. H ⁺ Transport in Morphogenesis 338 7. Conclusions: the Evolution of H ⁺ Transport 339
13.	Ion Absorption and Carbon Metabolism in Cells of Higher Plants (with 7 Figures) C.B. OSMOND
	 Introduction
	 5. Regulation of Internal Ionic Environment; Osmotic and Metabolic Responses 6. Conclusions 366
Au	thor Index (Part A)
Syr	nbols, Units, and Abbreviations
Sut	ject Index (Part A and B) (after p. 400)