Contents Part A

Introduction

A. LÄUCHLI and R.L. BIELESKI						•	•																1
------------------------------	--	--	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

I. General Chapters of Inorganic Plant Nutrition

I.1 General Introduction to the Mineral Nutrition of Plants

H. MARSCHNER (With 11 Figures)

1	Introduction and Historical Résumé	
	1.1 Essential Mineral Elements – Plant Nutrients	. 5
	1.2 Function of Essential Mineral Elements	. 6
	1.3 Beneficial Mineral Elements	. 7
	1.4 Recent Developments	. 9
	1.4.1 Calcium	
	1.4.2 Potassium	. 11
	1.4.3 Phosphorus	. 13
	1.4.4 Nitrogen	. 13
	1.4.5 Copper	. 14
	1.4.6 Chlorine	. 15
2	Uptake and Long-Distance Transport of Mineral Elements	. 16
	2.1 Ion Concentration at the Root Surface, Role of the "Rhizosphere" .	. 16
	2.2 Long-Distance Transport in the Xylem	. 18
	2.2.1 From the Roots to the Shoot	. 18
	2.2.2 Into Fruits, Seeds and Storage Organs	. 19
	2.2.3 Retranslocation of Mineral Elements from Leaves	. 20
3	Calcium Nutrition of Higher Plants	. 22
	3.1 Introduction	22
	3.2 Calcium Demand of Higher Plants	. 22
	3.3 Calcium Uptake by the Roots	. 23
	3.4 Long-Distance Transport of Calcium	
	3.4.1 Xylem Transport	
	3.4.2 Phloem Transport	. 26
	3.4.3 Xylem Versus Phloem Transport	. 27
	3.5 Role of Phytohormones and Growth Regulators	. 29
	3.6 Conclusion and Outlook	29
4	Mineral Nutrition and Physiology of Yield Formation – Sink-Source	,
	Relationship	. 30
	4.1 Introduction	
	4.2 Effect of Mineral Nutrition on Phytohormone Level and Sink	
	Formation	. 31
	4.3 Effect of Mineral Nutrients on Fertilization	. 33
	4.4 Source-Sink Interactions in Relation to Mineral Nutrition	. 34
5	Environmental Aspects of Mineral Nutrition	
5	5.1 Introduction	
	5.1.1 Nitrogen	. 37
	5.1.2 Heavy Metals	

5.2 Heavy Metal Toxicity			. 39
5.3 Heavy Metals in the Food Chain			
5.4 Heavy Metals in the Soil/Plant System			41
5.4.1 Content of Soils			
5.4.2 Soil Factors Affecting Heavy Metal Accumulation in Plan	its		. 43
5.4.3 Genotypic Differences in Heavy Metal Uptake			. 44
5.4.4 Distribution Within the Plants and Their Organs			. 46
5.4.5 Heavy Metal Tolerance		•	. 48
5.5 Concluding Remarks		•	. 49
References			. 49

I.2 The Significance of Rhizosphere Microflora and Mycorrhizas in Plant Nutrition

A.D. ROVIRA, G.D. BOWEN, and R.C. FOSTER (With 7 Figures)

1	Introduction	61
2	Energy Supplies in the Rhizosphere	61
	2.1 Exudates	61
	2.1 Exudates	62
	2.3 Plant Mucilages	
	2.4 Mucigel	
	2.5 Lysates	63
3	Microbiology of the Rhizosphere	64
	3.1 Populations of Micro-Organisms	64
	3.2 Colonization of Roots by Micro-Organisms	64
4	Mathematical Modelling of the Rhizosphere	65
5	Microscopy of the Rhizosphere	66
	5.1 Light Microscony	66
	5.1 Light Microscopy	66
	5.3 Transmission Electron Microscopy (T.E.M.)	69
	5.3.1 General Description	69
	5.3.1 General Description	70
	5.3.3 Microbial Invasion of the Mucilage and the Formation of Mucigel	72
	5.3.4 Functions of Root Mucilage and Mucigel	72
	5.3.5 The Outer Rhizosphere	72
	5.3.6 Invasion of the Root by Microorganisms	73
6	The Role of Rhizosphere Microorganisms in Plant Nutrition	
v	6.1 Availability of Nutrients	
	6.1.1 Nutrient Release and Immobilization	74
	6.1.2 Nitrification and Depitrification	74
	6.1.2 Nitrification and Denitrification 6.1.3 Nitrogen Fixation 6.1.4 Phosphate Availability	74
	6.1.4 Phosphate Availability	74
	6.1.5 Minor Nutrients	74
	6.2 Growth and Morphology of Roots	75
	6.21 Poot Length and Poot Hoirs	75
	6.2.1 Root Length and Root Hairs	75
	6.3 Nutrient Uptake Processes	76
	6.4 Physiology and Development	76
7	6.4 Physiology and Development	76
'	Mycorrhizas	70 78
	7.1 Plant Responses to Infection	70
	7.2 Mechanisms of the Response	79
	7.2.1 Nutrient Availability	80
	7.2.2 Absorption Characteristics of the Root	80
	7.2.3 Absorption by the Fungus Component	80
	7.3 Energy Requirements of Mycorrhizas	82
	7.4 Overview of Mycorrhizas	83

8 General Conclusions														
References	•						•	•	•			•		86

I.3 Modern Solution Culture Techniques C.J. ASHER and D.G. EDWARDS (With 3 Figures)

1 Major Differences Between Solution Culture and Soil Culture	94
1.1 Mechanical Support	94
1.2 Spatial Variation in Root Environment Parameters	95
1.3 Temporal Variation in Root Environment Parameters	97
1.3.1 Nutrient Depletion	97
1.3.2 pH Shifts	98
1.4 Root-Microorganism Interactions	98
2 Uses and Limitations of Existing Solution Culture Methods	99
2.1 Non-Renewed or Intermittently Renewed Water Cultures and Sand	
Cultures	99
2.1.1 Use in Teaching, Demonstration, and Diagnosis	99
	101
	101
	101
	105
	105
	106
	108
	108
2.3 Flowing Solution Culture	109
2.3.1 The Flow Rate Problem	109
	110
2.3.3 Research Applications	
	113
2.3.5 Commercial Crop Production	114
	115
	115

I.4 Diagnosis of Mineral Deficiencies Using Plant Tests D. BOUMA (With 5 Figures)

	Introduction 1 Plant Analysis 1 2.1 Physiological Basis 1 2.2 Choice of Tissue 1	21 21
	2.3 Factors Affecting the Relationship Between Nutrient Concentration and	
	Yield 1 2.3.1 Plant Development 1	
	2.3.2 Effects of Changes in Age of Tissue	25
	2.3.3 Plant Age and Critical Levels	26
	2.3.4 Interactions Between Nutrient Elements	27
	2.3.5 Environmental Factors	28
	2.3.6 Other Factors Affecting Nutrient Composition	30
3	Physiological and Biochemical Approaches to Diagnosis	31
	3.1 Introductory Remarks	31
	3.2 Physiological Approaches	31
	3.2.1 Physiological Assessment	31
	3.2.2 Nutrient Stress	32
	3.2.3 Approaches Based on Photosynthesis	32
	3.2.4 Other Approaches	

3.3 Biochemical Approaches 13 3.3.1 Nitrogen and Molybdenum 13 3.3.2 Phosphorus 13 3.3.3 Potassium and Magnesium 13 3.3.4 Iron and Manganese 13 3.3.5 Copper 13 3.3.6 Zinc 14 4 Prospects for the Future 14 References 14
I.5 Interactions Between Nutrients in Higher Plants A.D. ROBSON and M.G. PITMAN (With 9 Figures)
1 Introduction 14 2 Interactions Between Nutrients in Monoculture 15 2.1 Interactions Between Nutrients Affecting the Absorption of Nutrients 15 2.1.1 Interactions Occurring in the Soil 15 2.1.2 Absorption from Solution at the Root Surface 15 2.2 Interactions Between Nutrients Affecting the Utilization of Nutrients
Within the Plant 16 2.2.1 Distribution 16 2.2.2 Function 16 2.3 Complex Interactions Between Nutrients Involving Several Processes 16 2.3.1 Calcium/Aluminium/Phosphate 16 2.3.2 Zinc/Phosphate 16 3 Interactions Between Nutrients in Mixed Communities 17 4 Conclusion 17 References 17
I.6 Import and Export of Mineral Nutrients in Plant Roots U. LÜTTGE (With 10 Figures)
1 Introduction: The Dual Role of Roots in the Evolution of Higher Land Plants 18 2 Relations Between Structure and Transport Functions Along the Length of Roots 18
Roots 18 2.1 The Phenomenon of Variations in Transport Functions Along the Length of Roots 18 2.2 Structure-Function Relations in Various Root Zones 18 2.2.1 The Root Surface 18 2.2.2 The Cortex 18 2.2.3 The Endodermis 19 2.2.4 The Stele 19 3 Variations of Physiological Activities Along the Length of Roots 19 3.1 Growth, Differentiation and Hormonal Gradients 20 3.3 Differences in Ion Transport Mechanisms Along Roots 20 4 Root-Shoot Interactions and Circulation in the Whole Plant 20 4.1 Some Examples Illustrating General Aspects of Circulation 20 5 Conclusion 20 References 20

I.7 Cycling of Elements in the Biosphere C.C. DELWICHE (With 5 Figures)

l	The Sources of Plant Constituents										212
	1.1 Soil and Atmospheric Sources										212
	1.2 The Weathering Process										212

2 The Nature of Cycles	214
2.1 The Hydrologic Cycle	214
	215
2.3 The Magmatic Cycle	217
	217
3 The Nitrogen Cycle	219
3.1 Overall Cycle Features	219
3.2 Nitrification	221
3.3 Denitrification	
3.4 Nitrogen Fixation	
3.5 Human Influences	
4 The Sulfur Cycle	
4.1 Comparison with the Nitrogen Cycle	225
4.2 Microbial Oxidation	227
4.3 Sulfate Reduction	
4.4 Patterns of Sulfur Movement	
4.5 Human Influences	
5 The Phosphorus Cycle	
5.1 Oxidation and Reduction	
5.2 Movement and Transport in the Biosphere	
5.3 Human Influences	
	232
6.1 Biological Cycling	232
6.2 The Special Significance of Iron and Aluminum	232
6.3 Hydrogen Ion	
	234
6.5 Passive Cycling	
6.6 Possibilities of Deficiency	235
7 "Open" Versus "Closed" Agricultural Systems	
	237

II. Inorganic Nitrogen Nutrition

II.1 Physiology, Biochemistry and Genetics of Dinitrogen Fixation H. BOTHE, M.G. YATES, and F.C. CANNON (With 3 Figures)

1 The Nitrogen-Fixing Organisms and the Nitrogenase Reactions 2	:41
1.1 Introduction	241
1.2 Nitrogen Fixation by Free-Living Organisms	244
	245
	47
	248
2.1 Introduction	248
	249
	249
2.4 Metal Clusters in Nitrogenase Proteins	251
	252
	253
2.7 Nitrogenase Proteins in Photosynthetic Organisms	254
2.8 The Mechanism of Nitrogenase Activity	
	255
2.8.2 Evidence for Interaction of MgATP and MgADP with the MoFe	
	257
2.8.3 The Nature of the Active Site(s)	257
	258
	259
	259
	260

3.3 Flavodoxins	260
3.4 Electron Donors	261
4 Mechanisms to Protect Nitrogenase Against Damage by Oxygen	263
4.1 In Free-Living Organisms	263
4.2 The Heterocysts of Blue-Green Algae	264
4.3 The Role of Leghaemoglobin in Legume Nodules	265
5 Regulation of Nitrogenase Activity and Biosynthesis	265
5.1 Regulation of Nitrogenase Biosynthesis	265
5.2 Regulation of Nitrogenase Activity	267
6 The Hydrogenase-Nitrogenase Relationship	268
7 The Molecular and Genetic Characterization of Nitrogen Fixation Ge	nes 271
7.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	271
7.2 The <i>nif</i> Genes	272
7.3 nif Gene Products	273
7.4 Cloning of K. pneumoniae nif Genes	
7.5 A Physical Map of <i>nif</i> Genes	275
7.6 Interspecies Homology of Nitrogenase Genes	276
References	
II.2 Dinitrogen-Fixing Symbioses with Legumes, Non-Legume Angiosperms and Associative Symbioses	

1	Introduction					286
2	Description of the Main Symbiotic Dinitrogen-Fixing Systems					287
	2.1 Associative Symbioses			• •		287
	2.2 Symbioses with Cyanobacteria					287
	2.2.1 Distribution					287
	2.2.2 Description and Development					287
	2.2.3 N_2 Fixation (C_2H_2 Reduction)					288
	2.3 Root Nodules with Actinomycetes: Actinorhizas					288
	2.3.1 Distribution					
	2.3.2 Description					
	2.3.3 Infection and Development					291
	2.3.4 N ₂ Fixation (C_2H_2 Reduction)	•	•••	•••		291
	2.4 Leguminous Root Nodules with <i>Rhizobium</i>	•	•••	• •	•	291
	2.4.1 Distribution	•	•••	• •	•	291
	2.4.2 Description					
	2.4.3 Infection and Nodule Development	·	•••	• •	•	292
	2.4.4 N_2 Fixation (C_2H_2 Reduction)	•	•••	• •	•	295
	2.5 Non-Leguminous Root Nodules with <i>Rhizobium</i>	•	•••	•••	•	295
3	The Dinitrogen-Fixing Micro-Symbionts: Isolates and Cultures					
Ŭ	3.1 Introduction	,	•••	•••	•	295
	3.2 Cyanobacteria	•	• •	• •	·	296
	3.3 Frankia, the Endophyte from the Actinorhizas	•	• •	•••	•	297
	3.3.1 Isolation and Cultivation	•	•••	•••	•	207
	3.3.2 Specificity					
	3.3.3 Nutrient Requirements					
	3.3.4 Metabolic Activities	·	•••	•••	•	220
	3.4 <i>Rhizobium</i>	•	• •	• •	•	299
	3.4.1 Isolation and Description	•	•••	• •	•	279
	3.4.2 Taxonomy	•	•••	• •	·	277
	3.4.3 Metabolism	·	•••	• •	·	200
	3.4.4 N Eivation (C H Deduction)	•	•••	• •	·	200
	3.4.4 N ₂ Fixation (C_2H_2 Reduction)	·	•••	• •	·	302
л	3.4.5 Genetics	·	•••	• •	·	303
4	Symbiotic Relations	·	•••	• •	·	304
	4.1 Chemotaxis and Rhizosphere Accumulation	·	• •	•••	•	304
	4.2 Binding of <i>Rhizobium</i> to Root Hairs					305

.

Contents Part A	XVI
4.3 Root Hair Deformation and Infection-Thread Formation	
4.4 Cell Wall Degrading Enzymes	. 307
4.5 The Role of Plant Hormones in Nodule Formation	. 308
4.6 Miscellaneous Problems	
5 The N_2 -Fixing System	. 311
5.1 Introduction	. 311
5.2 Bacteroids	. 312
5.3 The Bacteroid-Containing Plant Cells	
5.4 Nitrogenase	. 315
$5.5 \text{ NH}_3 \text{ Assimilation}$. 315
5.6 Oxygen Regulation and Leghaemoglobin	. 317
5.7 Hydrogen Production and Hydrogen Uptake	. 318
6 Root Nodules as Part of the Whole Plant	. 319
7 Concluding Remarks	. 323
References	
J. DÖBEREINER (With 2 Figures) 1 Introduction	
2 Characterization of Rhizocoenoses	. 330
2.1 Sugar Cane – Beijerinckia	. 331
2.2 Paspalum notatum – Azotobacter paspali	. 332
2.3 Azospirillum Rhizocoenoses	. 332
2.3.1 Taxonomy of <i>Azospirillum</i> spp	. 333
2.3.2 Root Infection	. 334
2.3.3 Host Plant Specificity	. 336
2.3.4 Physiology of Azospirillum	. 337
2.4 Associations with Other N_2 -Fixing Bacteria	. 340
3 Agronomic Aspects	
3.1 Plant Genotype Effects	
3.2 Environmental Effects	. 342
3.3 Inoculation	
4 Phyllosphere Associations	
4.1 Microorganisms in the Phyllosphere	
4.2 Nitrogen Fixation in the Phyllosphere	344
5 General Conclusion	344
References	
	. 545
II.4 Uptake and Reduction of Nitrate: Bacteria and Higher Plants	. 94.

L. BEEVERS and R.H. HAGEMAN

	Introduction				
_	2.1 Species Differences in Ammonium and Nitrate Utilization .				352
	2.2 Influence of Ammonium or Nitrate on Cation Uptake				
	2.3 Nitrate Uptake				354
	2.4 Influence of Ammonium on Nitrate Uptake and Utilization				355
3	Nitrate Reduction				
	3.1 Bacteria				356
	3.2 Dissimilatory Nitrate Reductase				356
	3.3 Assimilatory Nitrate Reduction in Bacteria				358
	3.4 Characterization of Nitrate Reductase from Higher Plants .				
4	Molybdenum in Nitrate Reduction				360
5	Nitrite Reduction				
	5.1 Assimilatory Bacteria				361
	5.2 Dissimilatory Bacteria				361
	5.3 Nitrite Reductase in Plants	•	•	·	361

6 Location of Enzymes of Nitrate Assimilation in Higher Plants						363
7 Provision of Reductant for Nitrate Assimilation in Higher Plants						363
8 Regulation of Nitrate Reductase in Higher Plants						364
8.1 Substrate						364
8.2 Hormonal						365
8.3 Molybdenum						365
8.4 Ammonium		•				366
8.5 Light	•		•	•	•	366
8.6 Genetic	•	•			•	366
8.7 In Vivo Controls		·		·	٠	367
9 Concluding Thoughts	•	·	•	•	·	368
References	•		•	•	٠	369

II.5 Uptake and Reduction of Nitrate: Algae and Fungi W.R. ULLRICH (With 4 Figures)

1 Introduction		376
2 Nitrate and Nitrite Reduction in Algae		377
2.1 Nitrate Reductase of Eucaryotic Algae		377
2.2 Nitrate Reductase in Blue-Green Algae		380
2.3 Nitrite Reductase in Algae		380
2.4 Location of Nitrate and Nitrite Reduction in Algal Cells		381
2.5 Stoichiometry Between Nitrate Reduction and O_2 Exchange .		381
3 Nitrate Uptake in Algae		382
3.1 General Remarks		382
3.2 Substrate Affinity		383
3.3 Light Dependence		384
3.4 pH-Dependence		385
3.5 Dependence on Carbon Sources		385
3.6 Inhibition by Anions		386
3.7 Inhibition by Ammonia and Amino Compounds		387
3.8 Effect of Metabolic Inhibitors and Uncouplers		387
3.9 Stoichiometry Between the Uptake of Nitrate and that of Other	Ions	388
3.10 Transport Mechanism		388
4 Nitrite Uptake in Algae		389
5 General Remarks on Regulation of Nitrate and Nitrite Uptake		390
6 Uptake and Reduction of Nitrate and Nitrite in Fungi		391
References		393

III. Metabolism of Sulfur and Phosphorus

III.1 Reduction and Other Metabolic Reactions of Sulfate J.A. SCHIFF (With 6 Figures)

1	Introduction	401
2	The Place of Sulfate Reduction in the Sulfur Cycle	402
3	Phylogenetic Distribution of Reactions Involving Sulfate Transfer and	
	Reduction	403
4	Sulfate Uptake, Activation and Transfer	404
5	Sulfate Reduction	406
	5.1 Detailed Reactions of the Two Assimilatory Pathways	408
	5.1.1 The APS Pathway	408
	5.1.2 The PAPS Pathway	410
	5.2 Location of Sulfate Reduction in Tissues and Organs of Multicellular	
	Plants	413

6 Speculation	ıs	or	ı t	he	0	rig	ŗin	aı	nd	E	vo	lut	io	n (of	Pa	th	wa	iys	0	f S	lul	fat	te			
Reduction										•																	413
References										•		٠	•	٠	•												416

III.2 Physiology and Metabolism of Phosphate and Its Compounds R.L. BIELESKI and I.B. FERGUSON (With 4 Figures)

1 Introduction						422
2 Uptake and Transport of Phosphate						
3 Efflux of Phosphate, and Aspects of Phosphate Deficiency						
4 Phosphorus Compartments and Pools						431
5 The Form of Phosphorus in the Cell						433
6 Synthesis and Turnover of Phosphorus Compounds						440
7 Dynamics of Phosphate Use in the Plant						443
8 Conclusions						445
References	•		·	•		445

٠

Author- and Subject Index (see Part B)