Contents

I. Cell Walls of Higher Plants

1 Constitution of Plant Cell Wall Polysaccharides

G.O. Aspinall

1 The Classification of Plant Polysaccharides	3
2 The Main Structural Features	6
2.1 Cellulose, Other β -D-Glucose and Xyloglucans	6
2.2 Rhamnogalacturonans and Associated Arabinans and Arabinogalactans .	6
2.3 Mannans, Glucomannans and Galactoglucomannans	7
2.4 Xylans	7
2.5 Other Cell Wall Polysaccharides	7
3 Covalent and Non-Covalent Inter-Polymeric Linkages in the Cell Wall	7
References	8

2 Ultrastructure of the Plant Cell Wall: Biophysical Viewpoint

J.R. COLVIN

I Introduction	
1.1 What a Plant Cell Wall Is	9
1.2 What a Plant Cell Wall Is Not	10
1.3 Functions and Biological Significance of the Plant Cell Wall	. 10
2 Idealized Plant Cell Wall: Structure	11
2.1 Intercellular Layer	11
2.2 Primary Cell Wall	12
2.2.1 Matrix Substances	. 12
2.2.2 Microfibrils of Cellulose	. 12
2.2.3 Local Structure of the Primary Wall	
2.3 Secondary Cell Wall	
2.3.1 Bordered Pits	
2.4 Tertiary Wall	. 14
3 Actual Plant Cell Walls: Structure	. 15
3.1 Intercellular Layers of Various Species	. 15
3.2 Thickened Primary Wall of Axial Parenchyma Cells of Trembling Asper	
3.3 Secondary Wall Layers of Elm Parenchyma Cells	. 16
3.4 Ultrastructure of Cell Walls of Fusarium sulphureum	. 16
3.5 Ultrastructure of the Cell Wall of Yeasts	. 16
3.6 Cell Wall Structure of Algae	. 17
3.7 Physical Structure of Cell Walls from Protoplasts	. 18
3.8 Physics of Specialized Structures of Plant Cell Walls	. 19
4 Macromolecular Problems of Formation of Components of Plant Cell Walls	s. 19
4.1 Physical Formation of Cellulose Microfibrils	
4.2 Physical Formation of Chitin Microfibrils	21
4.3 Deposition of Hemicelluloses	. 21
4.4 Physical Self-Assembly of Plant Cell Walls	21
5 Resumé	. 22
References	. 22

VIII

3 The Assembly of Polysaccharide Fibrils

D.G. Rob	INS	SO	N (W	'itl	n 3	F	ïg	ure	es)												
References								,														- 28

4 Ultrastructure of the Plant Cell Wall: Biochemical Viewpoint K. KATŌ

1 Introduction	. 29
2 Microfibrillar Component	29
3 Matrix Noncellulosic Polysaccharides	30
3.1 Hemicelluloses	
3.1.1 Xylans	
3.1.2 Mixed β -Glucans	
3.1.3 Xyloglucans	
3.1.4 Glucomannans	
3.2 Pectic Polysaccharides	
3.2.1 Rhamnogalacturonan	
3.2.2 Arabinogalactans	
3.2.3 Arabinans and Galactans	34
3.3 Glycoprotein of the Walls	
3.4 Lignin	
4 Polysaccharidic Association Within the Primary Cell Wall	36
4.1 Dicot Primary Cell Walls	36
4.2 Monocot Primary Cell Walls	
5 Chemical Changes in the Cell Wall During Growth and Differentiation .	
6 Conclusion \ldots	
References	

5 Biosynthesis and Metabolism of Cellulose and Noncellulosic Cell Wall Glucans

G. FRANZ and U. HEINIGER (With 1 Figure)

1 Introduction: Various Aspects of Cellulose Formation in Vivo and in Vitro . 47
2 Possible Substrates for Cellulose Biosynthesis
2.1 Occurrence of NDP-Sugars (Sugar Nucleotides) in Tissues Actively Forming
Cell Walls
2.2 Sucrose Synthetase and Pyrophosphorylase Activities
2.3 Different NDP-Glucoses as Hypothetical Substrates for the in Vitro
Biosynthesis of Cellulose
2.4 In Vivo Studies on Cellulose Biosynthesis
3 Primer Requirement for Cellulose Biosynthesis
4 Involvement of Lipid-Intermediates in Cellulose Biosynthesis
5 Endogenous and Exogenous Factors Which Might Influence the Biosynthesis
of Cellulose
5.1 Hormonal Control of Cellulose Biosynthesis
5.2 Inhibitors in the Process of Cellulose Formation
6 Conclusion
References

6 Metabolism of Noncellulosic Polysaccharides

G.B. FINCHER and B.A. STONE (With 7 Figures)

1	Cell Walls and Cell Wall Metabolism								68
2	Molecular Aspects of Polysaccharide Synthesi	s							69

2.1 Origins of Monosaccharides and Their Activated Forms	69
2.2 Polysaccharide Assembly	70
2.2.1 Polymerizing Systems	70
2.2.2 Lipid-Saccharide Intermediates	70
2.2.3 Chain Initiation	73
2.2.4 Chain Elongation and Direction of Growth	74
2.2.5 Sequences of Linkages and Monosaccharides, and Insertion of Side	
Branches	74
2.2.6 Chain Termination	75
2.3 Biosynthesis of Glycosyl Ethers and Esters	75
2.4 Control	76
2.4.1 Supply of Monosaccharide Precursors	76
2.4.2 Activation and Interconversion of Monosaccharides	76
2.4.3 Polymerization	80
3 Cellular Aspects of Polysaccharide Synthesis and Processing	80
3.1 Location of Enzymes Leading to the Establishment of the Nucleotide Sugar	
Pool	80
3.2 Location of Glycosyl Transferases Involving Lipid Intermediates	81
3.3 Location of Polysaccharide Synthetases	81
3.4 Subcellular Routes of Polysaccharide Assembly	82
3.4.1 Golgi Dictyosome – Golgi Vesicle – Plasma Membrane Route	82
3.4.2 Endoplasmic Reticulum – Plasma Membrane Route	84
3.4.3 Assembly at the Plasma Membrane	85
3.4.4 Deposition of Polysaccharides in the Wall	86
4 Metabolism During Cell Division, Growth, Differentiation, Senescence and	00
Germination	87
4.1 Methodological Considerations and Interpretations	87
4.1 Methodological Considerations and Interpretations 4.2 Molecular Strategies in Morphogenesis	89
4.3 Cell Plate Formation	- 90
4.9 Cell Wall Deposition and Expansion	90
4.4 Frinary Cell Wall Deposition and Growth	93
4.5 Secondary Cent wan Deposition and Grownin 2012 11 11 11 11 11 11 11 11 11 11 11 11 1	93
4.6.1 Tracheids, Laticifers, Aerenchyma and Lateral Root Initiation	94 94
4.6.2 Tyloses	94 97
4.6.3 Formation of Plasmodesmata and Differentiation of Sieve Plates	97 97
	97 99
4.6.4 Gametogenic Tissues	
	101
	102
	102
	103
	105
	105
	108
	108
5.1.1 Geotropism and Phototropism	108
	108
	109
	109
	110
5.4 Pathogenesis	
References	114

7 Glycoproteins and Enzymes of the Cell Wall

D.T.A. LAMPORT and J.W. CATT

ł	Introduction														133
2	Structural or Matrix Pro	teins	; .						•						134

2.1 Higher and Lower Plants 13 2.1.1 Glycopeptide Linkages 13 2.1.2 Hydroxyproline Glycosides 13 2.1.3 Peptide Sequence and Conformation 13 2.1.4 Role of Glycosylation 13 2.1.5 Assembly 13 2.1.6 Possible Roles for the Matrix Protein Extensin 13 2.2 Algae 14
2.1.2 Hydroxyproline Glycosides 13 2.1.3 Peptide Sequence and Conformation 13 2.1.4 Role of Glycosylation 13 2.1.5 Assembly 13 2.1.6 Possible Roles for the Matrix Protein Extensin 13 2.2 Algae 14
2.1.3 Peptide Sequence and Conformation 13 2.1.4 Role of Glycosylation 13 2.1.5 Assembly 13 2.1.6 Possible Roles for the Matrix Protein Extensin 13 2.2 Algae 14
2.1.4 Role of Glycosylation 13 2.1.5 Assembly 13 2.1.6 Possible Roles for the Matrix Protein Extensin 13 2.2 Algae 14
2.1.5 Assembly 13 2.1.6 Possible Roles for the Matrix Protein Extensin 13 2.2 Algae 14
2.1.6 Possible Roles for the Matrix Protein Extensin 13 2.2 Algae 14
2.2 Algae
2.2.1 Occurrence of Matrix Proteins
2.2.2 The Chlamydomonas Type Wall
2.2.3 Phylogenetic Considerations
3 Cell Wall Enzymes
3.1 Introduction
3.2 Biological Role
3.2.1 Involvement in Cell Wall Assembly and Cell Extension
3.2.2 Involvement in Transport
3.2.3 Involvement in Recognition Phenomena and Disease Resistance 15
4 Arabinogalactan Proteins (AGP's) and β -Lectins
4.1 General Properties
4.2 Chemistry, Physical Properties, and Biosynthesis
4.3 Biological Role
4.3.1 Water Relations
4.3.2 Mechanical Cell-Cell Interactions
4.3.3 Cell Recognition
5 Concluding Remarks
References

8 The Role of Lipid-Linked Saccharides in the Biosynthesis of Complex Carbohydrates

A.D. ELBEIN (With 9 Figures)

2 Nature of the Lipid Carrier	 	167
3 Glycoproteins or Other Complex Carbohydrates	 	168
4 Lipid-linked Monosaccharides	 	170
4.1 Mannose		
4.2 Glucose	 	171
4.3 N-Acetylglucosamine	 	172
4.4 Other Monosaccharide Lipids		
5 Oligosaccharide Derivatives	 	174
6 Protein Glycosylation	 	178
7 Further Reactions – Processing of Proteins	 	181
8 Effect of Antibiotics and Other Inhibitors	 	183
9 Subcellular Location of the Enzymes of the Dolichol Pathway	 	187
10 Conclusions	 	188
References	 	188

9 Biosynthesis of Lignin

T. HIGUCHI (With 22 Figures)

l	Occurrence of Lignin in Plants			 194
2	2 Morphological Distribution of Lignins in Plant Cell Walls			 197
3	Biogenesis of Lignin Precursors			 201
	3.1 Shikimic Acid – Phenylalanine Pathway			 201
	3.2 Cinnamic Acid Pathway			 203

3.2.1 Hydroxylation of Cinnamic Acids	204
3.2.2 Methylation of Hydroxycinnamic Acids	205
3.2.3 Reduction of Hydroxycinnamic Acids	
4 Dehydrogenative Polymerization of Hydroxycinnamyl Alcohols to Lignins	209
4.1 Role of Peroxidase in the Dehydrogenative Polymerization of	
Hydroxycinnamyl Alcohols (Monolignols) to Lignins	212
4.2 Structural Variation in Dehydrogenation Polymers	215
5 Formation and Distribution of Syringyl Lignin in Angiosperm Woods	217
6 Differences Between Gymnosperms and Angiosperms in Lignin Biosynthesis .	218
7 Regulation of Lignin Biosynthesis	220
References	

10 Hydrophobic Layers Attached to Cell Walls. Cutin, Suberin and Associated Waxes

P.E. KOLATTUKUDY, K.E. ESPELIE and C.L. SOLIDAY (With 9 Figures)

1 Introduction					225
2 Location and Ultrastructure of Cutin, Suberin, and Waxes					225
3 Composition and Structure of Cutin and Suberin					227
3.1 Isolation and Depolymerization of Cutin and Suberin .					227
3.2 Composition of the Monomers of Cutin and Suberin .					228
3.3 Intermolecular Linkages in Cutin and Suberin					231
4 Biosynthesis of Cutin and Suberin					232
4.1 Biosynthesis of the C ₁₆ Family of Monomers					232
4.2 Biosynthesis of the C ₁₈ Family of Monomers					234
4.3 Synthesis of the Cutin Polymer from Monomers					234
4.4 Biosynthesis of the Aliphatic Components of Suberin					235
4.5 Regulation of Suberization					
4.6 Site of Synthesis of the Monomers and the Polymers .					236
5 Biodegradation of Cutin and Suberin					237
5.1 Fungal Cutinase					237
5.2 Pollen Cutinase					238
6 Isolation and Analysis of Waxes					239
7 Composition of Waxes					
8 Biosynthesis of Waxes					243
8.1 Biosynthesis of Very Long Fatty Acids					243
8.2 Biosynthesis of Fatty Alcohols					244
8.3 Biosynthesis of Wax Esters				-	244
8.4 Biosynthesis of Hydrocarbons and Derivatives					245
8.5 Biosynthesis of β -Diketones					246
9 Function of Cutin, Suberin and Associated Waxes					
References					248

11 Wall Extensibility: Hormones and Wall Extension

R.E. CLELAND (With 2 Figures)

1	Introduction		255
2	Cellular Parameters Which Control Cell Elongation		255
3	Do Hormones Control Wall Extension via Changes in Wall Extensibility	?	256
	3.1 WEx and the Mechanical Properties of Cell Walls		256
	3.1.1 What is WEx?		256
	3.1.2 Mechanical Properties of Cell Walls		257
	3.1.3 Changes in WEx in Vivo		258
	3.2 Measurement of WEx		258
	3.2.1 Measurement of the Mechanical Properties of Isolated Walls .		258

3.2.2 Direct Measurement of WEx
3.2.3 Other Mechanical Testing Procedures
3.3 Cases Where Hormones Affect WEx
3.3.1 Auxin
3.3.2 Gibberellin
3.3.3 Other Hormones
3.3.4 Conclusions
4 The Mechanism of Auxin-Induced Wall Loosening
4.1 Wall Structure, Wall Synthesis and Wall Loosening
4.2 Possible Mechanisms for Wall Loosening
4.2.1 Breakage of Hydrogen Bonds
4.2.2 Calcium Cross-Links
4.2.3 Nonenzymatic Wall Loosening
4.2.4 Enzymatic Wall Loosening
4.2.5 Conclusions
References

II. Cell Walls of Algae and Fungi

12 Algal Walls - Composition and Biosynthesis

E. PERCIVAL and R.H. McDowell (With 6 Figures)

			277
2	Cellı	llose and Other Glucans	279
	2.1	Chlorophyceae	280
	2.2	Rhodophyceae	281
	2.3		281
	2.4		281
	2.5		281
3	Xyla	Ins	282
	3.1	Rhodophyceae	282
	3.2	Chlorophyceae	282
4	Man		283
	4.1		283
	4.2		283
5	Algi		284
	5.1		284
	5.2		285
	5.3		286
	5.4		286
	5.5		287
	5.6		288
6	Gala		289
	6.1	Agar and Related Molecules	291
	6.2	Carrageenan and Related Polysaccharides	292
	6.3	Conformation	293
	6.4	Gametophyte and Sporophyte Carrageenans	294
	6.5	Immunochemistry	294
	6.6	Cell Wall Localization	294
	6.7	Biosynthesis	295
7	Fuc	ans	295
	7.1	Structure	297
	7.2	Site of Sulfate	297

7.3 Biosynthesis	298
7.4 Location and Function	298
8 Sulfated Polysaccharides of the Chlorophyceae	299
9 Polysaccharides of the Bacillariophyceae	303
10 Extracellular Polysaccharides	303
10.1 From Phaeophyceae	303
10.2 From Rhodophyceae	303
10.3 From the Xanthophyceae	304
10.4 From Bacillariophyceae	305
11 Conclusions	305
11.1 Functions	305
11.2 Taxonomy	306
References	306

13 Algal Walls - Cytology of Formation

D.G. ROBINSON (With 13 Figures)

1 Matrix Polysaccharide and Slime Production	317
2 Microfibril Synthesis and Orientation	317
2.1 The Formation and Secretion of Scales	317
2.1.1 Scale Structure	317
2.1.2 The Golgi Apparatus and Scale Production	318
2.1.3 Scale Transport and Liberation	320
2.2 Microfibril Deposition in Cellulosic Algae	320
2.2.1 Cladophorales, Siphonocladales	320
2.2.2 Chlorococcales	322
2.2.3 Conjugales (Placoderm Desmids)	325
2.3 The Production of Chitin Microfibrils	326
2.3.1 Poterioochromonas	326
2.3.2 Centric Diatoms	
3 Glycoprotein Wall Formation	328
References	

14 Algal Wall-Degrading Enzymes - Autolysines

U.G. SCHLÖSSER (With 7 Figures)

I Introduction	333
2 Autolysines Found in Algae	
2.1 Chlamydomonas (Chlorophyceae, Volvocales)	334
	334
2.1.2 Specificity of Action	338
2.1.3 Isolation and Properties	
2.1.4 Regulation	
2.1.5 Reproduction Cell Release Mechanism	343
2.2 Volvox (Chlorophyceae, Volvocales)	
2.3 Chlorella (Chlorophyceae. Chlorococcales)	
2.4 Geminella (Chlorophyceae, Ulotrichales)	346
3 Indication of Autolysine Action in Other Algae	346
3.1 Cell Wall Changes in the Reproduction Phase	346
3.2 Lysis by Exogenous Enzymes	
3.3 Dependency on Divalent Cations	
4 Application of Autolysines	
References	

XIV

15 Fungal Cell Walls: A Survey

J.G.H. WESSELS and J.H. SIETSMA (With 1 Figure)

1 Introduction	52
1.1 Methodological Difficulties	152
2 Survey of Wall Polymers	53
2.1 Distribution Among Fungi	353
2.2 Individual Polymers	\$55
2.2.1 $(1 \rightarrow 4)$ - β -D-Glycosaminoglycans (Chitin, Chitosan)	155
2.2.2 $(1 \rightarrow 4)$ - β -D-Glucan (Cellulose)	\$57
2.2.3 $(1 \rightarrow 3) - \beta - D/(1 \rightarrow 6) - \beta - D$ -Glucan	\$58
2.2.4 $(1 \rightarrow 3)$ - α -D-Glucan with Variable Amounts of $(1 \rightarrow 4)$ - α -Linkages 3	360
2.2.5 Homo- and Hetero-Glucuronans	361
2.2.6 Glycoproteins	362
3 Ultrastructural Localization of Wall Polymers	363
3.1 Methodological Difficulties	363
3.2 Mature Walls	363
3.2.1 Filamentous Fungi	363
3.2.2 Yeasts	367
3.3 Newly Formed Walls	368
3.3.1 Reverted Protoplasts and Germinated Zoospores	368
3.3.2 Growing Areas of the Wall	
4 Wall Composition and Cellular Morphology	370
4.1 Does Wall Composition Determine Cellular Morphology?	370
in Dete nun competition Determine ethuna interprintegi i i i i i i	371
5 Wall-Degrading Enzymes	373
5.1 Wall Components as Substrates for Degrading Enzymes	
5.2 Net Degradation of Wall Components in Relation to Development	275
5.3 "Wall-Loosening" Enzymes	270
6 Synthesis of the Wall	313 270
6.1 Introduction	219 270
6.2 Biosynthesis of Individual Wall Components	
	379
	381
6.2.3 Glycoprotein	381
6.3 Wall Synthesis and Morphogenesis	
References	384

16 Chitin: Structure, Metabolism, and Regulation of Biosynthesis

E. CABIB (With 8 Figures)

1 Introduction	395
2 Chemical and Physical Structure	395
	397
	397
4.1 Biosynthesis of Precursors	397
4.2 Chitin Synthetase and its Regulation	
4.2.1 General Properties of Chitin Synthetase	398
4.2.2 Regulation of Chitin Synthetase Activity	401
4.2.3 Subcellular Distribution of Chitin Synthetase	403
5 Chitin Degradation	405
6 Regulation and Localization of Chitin Synthesis in Vivo	405
6.1 Introduction	405
6.2 Primary Septum Formation in Budding Yeasts	406
6.3 Hyphal Growth	408
6.4 Chitin Synthesis During Round Cell Formation in Blastocladiella emersonii	410
References	

17 Fungal Glucans – Structure and Metabolism

G.H. FLEET and H.J. PHAFF

1 Introduction							
2 Glucans from Yeasts							417
2.1 Cell Envelope Glucans							
2.1.1 Structure							
2.1.2 Degradation					 		420
3 Glucans from Filamentous Fungi					 		426
3.1 Structure							
3.1.1 β -Linked Glucans					 		426
3.1.2 α -Linked Glucans					 		428
3.2 Fungal Glucanases and Glucan Degradatio	n				 		429
4 Biosynthesis					 		431
References					 		432

18 Mannoproteins: Structure

R.E. COHEN and C.E. BALLOU (With 3 Figures)

1 Definition and Occurrence	441
2 Isolation and Criteria of Homogeneity	441
3 Methods for Structural Analysis	442
3.1 Selective Chemical Degradations	442
3.2 Selective Enzymic Degradations	443
3.3 Mutant Analysis	443
3.4 Immunochemical Methods	444
3.5 Physical Methods	
4 Saccharomyces cerevisiae Mannoprotein	445
4.1 Bulk Cell Wall Mannoprotein	445
4.2 Characteristics of Mannan Mutants	447
4.3 Invertase, an Example of a "Homogeneous" Extracellular Glycoprotein	449
4.4 Carboxypeptidase Y, an Example of a "Homogeneous" Intracellular	
Mannoprotein	451
5 Hansenula wingei Sexual Agglutination Factors	453
5.1 Description of the Mating Reaction in Yeasts	453
5.2 Isolation and Structure of the 5-Cell Agglutinin	453
	454
	454
References	455

19 Biosynthesis of Mannoproteins in Fungi

L. LEHLE (With 2 Figures)	
1 Introduction	459
2 Biosynthesis of Mannoproteins in Saccharomyces Species	159
2.1 Early in Vitro Studies with Guanosine Diphosphate Mannose	159
2.2 Participation of Lipid-Linked Intermediates	160
2.2.1 Identification of the Glycosylated Lipid Intermediate	460
2.2.2 Role of Dolichyl Monophosphate in the Formation of	
Mannooligosaccharide Chains Linked Through the Hydroxyl Group	
of Serine and Threonine	60
2.2.3 Role of Dolichyl Diphosphate-Linked Oligosaccharides in the	
Formation of the Core Structure Containing the N-	
Acetylglucosaminyl-Asparagine Linkage	61
2.3 Mannosyl Transfer Reactions Involved in the Assembly of the Outer	
Chain Structure	63

3 Biosynthesis of Mannoproteins in Othe	Species
3.1 Hansenula Species	
3.2 Kuvveromyces lactis	
3.3 Cryptococcus laurentii	
3.4 Aspergillus Species	
3.5 Penicillium Species	
3.6 Other Species	
4 Subcellular Sites of Glycosylation	
5 Possible Control of Mannoprotein Bios	ynthesis
6 Attempts to Study Solubilized Glycosy	Transferases
7 A Summary of Mannoprotein Biosynth	esis; How It Might Occur: a Model . 474
References	

III. Export of Carbohydrate Material

20 Secretory Processes - General Considerations and Secretion in Fungi

R. SENTANDREU, G. LARRIBA and M.V. ELORZA (With 5 Figures)

1 Introduction	487
2 Synthesis and Segregation of Export Polymers	
2.1 The Signal Hypothesis	488
2.1.1 Mammalian Cells	488
2.1.2 Bacteria	
2.1.3 Fungi	491
2.2 Mechanisms of Glycosylation	493
2.2.1 Mammalian Cells	
2.2.2 Fungi	493
3 Transport of Secretion Products	496
3.1 Mammalian Cells	490
3.2 Fungi	498
4 Discharge of Secretion Products	
5 Synthesis and Secretion of Cell Wall Polysaccharides	504
6 Concluding Remarks	500
References	50

21 Secretion of Cell Wall Material in Higher Plants

J.H.M. WILLISON (With 9 Figures)

1 Introduction	 513
2 Cell Plate Formation	 514
2.1 Role of the Phragmoplast	
2.2 Role of Organelles	 516
3 Secretion of Primary Wall Matrix Substances	
4 Secretion of Microfibrils	
4.1 Site of Synthesis	
4.2 Mechanism of Synthesis	
4.3 Control of Microfibril Orientation	
4.4 Cellulose Secretion by Acetobacter xylinum	
5 Cell Wall Assembly	528
6 Secretion of Lipidic Wall Materials	528
6.1 The Cuticle	
6.2 Epicuticular Waxes	
6.3 Suberinized Layers	531
References	532

22 Secretory Activity of the Root Cap

M. ROUGIER (With 9 Figures)

1 Introduction			542
2 Root Cap Architecture and Root Cap Secretory Activity			542
2.1 Occurrence and Localization of Secretory Cells in the Root Cap			542
2.2 Life and Differentiation of Secretory Cells			544
2.3 Ultrastructure of Secretory Cells			545
3 Characteristics of the Secretory Products			549
3.1 Collection and Chemical Analysis of Root Cap Slimes			549
3.1.1 Monosaccharide Components			551
3.1.2 Other Components			552
3.2 Structure of Root Cap Slimes			552
3.3 In Situ Identification of Slime Components			553
4 Secretory Pathways			556
4.1 Biosynthesis of Slime Polysaccharides			556
4.2 Transport via Granulocrine Process			558
4.3 Slime Discharge			560
4.4 Model of Secretion			561
5 Physiology of the Secretion Processes			562
5.1 Control of the Polysaccharide Droplet Formation and Size			562
5.2 Control of Vesicle Production and Discharge			563
5.3 Characteristics of the Secretory Cycle			564
5.4 Participation of Enzymes in the Secretion Processes			565
6 Function of the Root Cap Slime			565
6.1 Slime as a Constituent of Mucigel			565
6.2 Function of the Mucigel at the Root Level			565
6.3 Function of Mucigel at the Root-Soil Interface			566
6.3.1 Slime and Sloughed Cells as a Source of Organic Carbon and	i		
Nitrogen in the Rhizosphere			566
6.3.2 Action of the Mucigel on Soil Aggregation and Stability .			567
6.3.3 Role of Root Cap Slime on Microbial Colonization			567
7 Concluding Remarks			569
References			569

IV. Cell Surface Phenomena

23 Defined Components Involved in Pollination

A.E. CLARKE (With 1 Figure)

1 Introduction							577
2 Arabinogalactans as Pistil Components of Gladiolus and Li	liun	1					577
3 S-Allele Associated Style Components							580
4 Callose as a Response to Self-Incompatible Matings							581
5 Callose as a Pollen Tube Wall Component							581
References			•			•	582

24 Carbohydrates in Plant - Pathogen Interactions

T. KOSUGE (With 5 Figures)

	Introduction	
2	Role of Polysaccharides in the Early Interactions Between Plant and Pathogen	584

2.1 Role of Recognition in Plant – Pathogen Interactions 584 2.2 Recognition in the Infection Process 585 2.3 Recognition in Resistance Reactions 586 2.4 Specificity Through Suppressors and Protectors 588 3 Carbohydrate Metabolism of Pathogens in Host Tissue 588 3.1 Production of Polysaccharide-Degrading Enzymes 588 3.1.1 Nature and Action in Host Tissue 588 3.1.2 Conditions Affecting Production 591 3.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo 592 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue 593 3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4.1 Polysaccharide Elicitors of the Phytoalexin Response 602
2.3 Recognition in Resistance Reactions 586 2.4 Specificity Through Suppressors and Protectors 588 3 Carbohydrate Metabolism of Pathogens in Host Tissue 588 3.1 Production of Polysaccharide-Degrading Enzymes 588 3.1.1 Nature and Action in Host Tissue 588 3.1.2 Conditions Affecting Production 581 3.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo 592 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue 593 3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 593 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
2.4 Specificity Through Suppressors and Protectors 588 3 Carbohydrate Metabolism of Pathogens in Host Tissue 588 3.1 Production of Polysaccharide-Degrading Enzymes 588 3.1.1 Nature and Action in Host Tissue 588 3.1.2 Conditions Affecting Production 591 3.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo 592 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue 593 3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3 Carbohydrate Metabolism of Pathogens in Host Tissue 588 3.1 Production of Polysaccharide-Degrading Enzymes 588 3.1.1 Nature and Action in Host Tissue 588 3.1.2 Conditions Affecting Production 591 3.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo 592 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue 593 3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.1 Production of Polysaccharide-Degrading Enzymes 588 3.1.1 Nature and Action in Host Tissue 588 3.1.2 Conditions Affecting Production 591 3.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo 592 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue 593 3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbohydrates by Pathogens in Host Tissue 595 3.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.1.1 Nature and Action in Host Tissue5883.1.2 Conditions Affecting Production5913.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo5923.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue5933.2.1 Catabolite Repression in Pathogens in Host Tissue5933.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue5943.2.3 Pathways of Carbon Catabolism in Host Tissue5953.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue5953.3.1 Structure of Toxins5953.3.2 Mode of Action of Toxins6003.3.3 Role of Toxins in Disease6013.3.4 Conditions Affecting Production of Toxins6024 Carbohydrates in Host Response to Infection602
3.1.2 Conditions Affecting Production5913.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo5923.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue5933.2.1 Catabolite Repression in Pathogens in Host Tissue5933.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue5943.2.3 Pathways of Carbon Catabolism in Host Tissue5953.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue5953.3.1 Structure of Toxins5953.3.2 Mode of Action of Toxins6003.3.3 Role of Toxins in Disease6013.3.4 Conditions Affecting Production of Toxins6024 Carbohydrates in Host Response to Infection602
 3.1.3 Role of Polysaccharide-Degrading Enzymes in Vivo 592 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue 593 3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection
 3.2 Carbohydrates as a Source of Energy of Pathogens in Host Tissue
3.2.1 Catabolite Repression in Pathogens in Host Tissue 593 3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.2.2 Acquisition of Energy Sources by Pathogens in Host Tissue 594 3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.2.3 Pathways of Carbon Catabolism in Host Tissue 595 3.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.3 Production of Toxic Carbohydrates by Pathogens in Host Tissue 595 3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.3.1 Structure of Toxins 595 3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.3.2 Mode of Action of Toxins 600 3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.3.3 Role of Toxins in Disease 601 3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
3.3.4 Conditions Affecting Production of Toxins 602 4 Carbohydrates in Host Response to Infection 602
4 Carbohydrates in Host Response to Infection
4.1.1 Structure and Mode of Action of Elicitors
4.1.2 Specificity of Elicitors
4.2 Altered Carbohydrate Metabolism in Host in Response to Infection
4.2.1 Altered Carbon Metabolism in Host in Response to infection 4.2.606
4.2.2 Induction of Polysaccharide-Degrading Enzymes by Host Tissue in
Response to Infection
4.2.3 Production of Polysaccharides by Host in Response to Infection 608
4.3 Toxic Host Glycosides in Plant – Pathogen Interactions
4.3.1 Structure and Metabolism of Toxic Glycosides
4.3.2 Role of Toxic Glycosides in Host – Pathogen Interactions
4.4 Concluding Remarks
References

V. Lectin - Carbohydrate Interaction

25 Lectins and Their Physiological Role in Slime Molds and in Higher Plants

H. KAUSS

1 What are Lectins?													627
2 Biochemical Prope													
2.1 Assay and Iso	ation												629
2.2 Carbohydrate	Binding Specificity												630
2.3 Structure													634
3 Applications and 1	Biological Properties	of Plant	Lec	tins	s in	A	nir	nal	Sy	ste	m	S	636
4 Role of Lectins in	Slime Mold Aggreg	ation .											638
5 Lectins in Higher	Plants												641
5.1 Recognition P	henomena Possibly M	Mediated	by	Leo	tins	5							641
5.2 Distribution o	f Lectins in Various	Tissues											644
5.3 Subcellular Lo	calization of Lectins												645
5.3.1 Lectins A	Associated with Mem	ibranes											645
5.3.2 Lectins A	Associated with Wall	s											647
5.3.3 Phloem	Lectins												648
5.4 Plant Toxins (Containing Lectin Su	bunits											649
5.5 Possible Relat	ons Between Lectins	and En	zym	es									651

26 The Role of Lectins in Symbiotic Plant - Microbe Interactions

E.L. SCHMIDT and B.B. BOHLOOL (With 2 Figures)

1 Introduction 65 2 Pre-Recognition Events of Concern 65 2.1 Rhizosphere Competence 65	59
2.2 Host Rhizosphere Stimulation 66 2.3 Arrival at the Recognition Site 66	
3 Lectin-Mediated Recognition	53
3.1 Lectin Recognition Hypothesis 66 3.2 Lectin-Binding Site of Symbiont 66	
3.3 Lectin-Binding Site of Host	67
3.4 Lectin-Binding Competence in Rhizobia	
4.1 Attachment 67 4.2 Post-Recognition Function of Lectins 67	
5 Concluding Comments	72
References	14
Author Index	79
Subject Index	47