Contents

I. Monomeric and Oligomeric Sugars and Sugar Derivatives – Occurrence, Metabolism, Function

1 Aldo (and Keto) Hexoses and Uronic Acids

D.S. FEINGOLD (With 9 Figures)

1	Introduction
	1.1 Historical
	1.2 Sugar Nucleotides and Carbohydrate Interconversions in Plants
	1.3 Sugar Nucleotides Isolated from Plants to Date
2	
	2.1 Hexokinase
	2.2 D-Galactokinase and L-Arabinokinase
	2.3 D-Glucuronokinase
	2.4 D-Galacturonokinase
3	
	3.1 UDP-D-Glucose Pyrophosphorylase
	3.2 ADP-D-Glucose Pyrophosphorylase
	3.3 GDP-D-Glucose Pyrophosphorylase
	3.4 TDP-D-Glucose Pyrophosphorylase
	3.5 Utilization of α-D-Galactopyranosyl Phosphate
	3.6 GDP-D-Mannose Pyrophosphorylase
	3.7 UDP-N-Acetyl-D-Glucosamine Pyrophosphorylase
	3.8 ADP-N-Acetyl-D-Glucosamine Pyrophosphorylase
	3.7UDP-N-Acetyl-D-Glucosamine Pyrophosphorylase223.8ADP-N-Acetyl-D-Glucosamine Pyrophosphorylase233.9GDP-L-Fucose Pyrophosphorylase23
	3.10 UDP-p-Glucuronate Pyrophosphorylase
	3.11 UDP-D-Galacturonate Pyrophosphorylase
	3.12 Nucleoside Diphosphate Pentose Pyrophosphorylases
	3.13 Other Nucleotide Sugar Pyrophosphorylase Activities
	3.14 Other Transglycosylation Reactions Responsible for the Formation of
	Nucleotide Sugars
	3.15 Degradation of Nucleotide Sugars
	3.15.1 ADP-D-Glucose Phosphorylase
	3.15.2 Hydrolysis of Nucleotide Sugars by Phosphodiesterase
Δ	Nucleotide Sugar Epimerases
7	4.1 UDP-D-Glucose-4-Epimerase
	4.2 UDP-D-Xylose-4-Epimerase
	4.2 ODT-D-Aylose-4-Epiniciase 4.2.1 Possible Origin of L-Arabinofuranosyl Moieties
	4.3 UDP-D-Glucuronate-4-Epimerase
	4.4 Biosynthesis of L-Galactose in Plants (GDP-D-Mannose-3,5-Epimerase) 37
	4.5 GDP-D-Glucose-2-Epimerase
5	Biosynthesis of Deoxysugars in Plants
د	5.1 L-Rhamnose and L-Fucose
¢	5.2 UDP-Digitoxose
O	61 UDP-D-Glucose Dehydrogenase
	6.1 UDP-D-Glucose Dehydrogenase

7 De Novo Synthesis of UDP-D-Xylose; UDP-D-Glucuronate	D)ec	ar	boz	kyl	as	e	•	
7.1 UDP-D-Glucuronate Decarboxylase							•		
8 Miscellaneous Topics (Not Treated Above)						•	•		•
8.1 Nucleotide Sugars Involving D-Fructose and D-Ribose						•		•	
8.1.1 UDP-D-Fructose								•	
8.1.2 ADP-D-Ribose (5)									
8.2 Control of Nucleotide Sugar Synthesis and Utilization									
9 Possible Evolutionary Significance of Carbohydrate Intercon	ive	ersi	ior	ı P	atł	ıw	/ay	/S	
References									

2 Polyhydroxy Acids: Relation to Hexose Phosphate Metabolism

J.E. GANDER (With 4 Figur	res)
---------------------------	------

1 Introduction	77
2 Overview of the Role of Hexoses, Pentoses and Polyhydroxy Acids in	
Metabolic Systems of Plants	77
3 Reactions and Functions of the Oxidative Pentose Phosphate Pathway, and	
Properties of Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases .	79
4 Glucose 6-Phosphate-myo-Inositol Glucuronate Pathway and Metabolism of	
Phytic Acid	85
5 Biosynthesis, Metabolic Reactions and Proposed Metabolic Functions of	
L-Ascorbate	87
6 L-(+)-Tartaric Acid and Oxalic Acid Metabolism	
7 Concluding Remarks	
References	95

3 Amino Sugars - Plants and Fungi

L. BEEVERS (With 3 Figur	(res)
--------------------------	-------

1 Introduction
2 Nomenclature
3 Methods of Detection
4 Occurrence
4.1 Amino Sugars in Fungal Cell Walls
4.2 Mannans
4.3 Amino Sugars in Algal Cell Walls
4.4 Glycoproteins
4.4.1 Fungi
4.4.2 Higher Plants
4.4.3 Membrane Glycoproteins in Higher Plants
5 Glycolipids
5.1 Lipid Intermediates in Glycoprotein Biosynthesis
5.2 Glycosphingolipids
6 Amino Sugar Biosynthesis
6.1 Glucosamine 6-Phosphate
6.1.1 Hexokinases
6.2 Formation of N-Acetylglucosamine-6-Phosphate
6.3 Conversion of GlcNAc-6-Phosphate to GlcNAc-1-Phosphate
6.4 Amino Sugar Nucleotides
7 Galactosamine
Galactosamile
8 Glycosidases
8.1 Higher Plants
8.2 Fungi
References

4 Branched-Chain Sugars

E.	Beck	(With	12	Figures)
----	------	-------	----	----------

1 Introduction
2 Branched-Chain Monosaccharides of Green Plants
2.1 D-Hamamelose
2.1.1 Elucidation of the Structure
2.1.2 Occurrence of Free D-Hamamelose
2.1.3 Biosynthesis of D-Hamamelose
2.1.4 Natural Derivatives of D-Hamamelose
2.1.5 Biological Degradation of D-Hamamelose
2.2 D-Apiose (3-C-Hydroxymethyl)-D-Glycero-Aldotetrose)
2.2.1 Elucidation of the Structure
2.2.2 D-Apio D-Furanose as Glycosidic Component of Plant Cell Wall
Polysaccharides and of Phenolic Plant Constituents
2.2.3 Biosynthesis of UDP-D-Apiose
2.2.4 Transfer of the D-Apiosyl-Residue
2.2.5 Metabolism of D-Apiose
3 Branched-Chain Monosaccharides of Microorganisms
3.1 Methyl-Branched Monosaccharides
3.1.1 CDP-L-Vinelose (Cytidine-6-Deoxy-3-C-(Methyl)-2-O-Methyl-
L-Talose)
3.1.2 L-Noviose (6-Deoxy-3-O-Carbonyl-5-C-Methyl-4-O-Methyl-
L-Lyxohexose)
3.1.3 L-Mycarose (2,6-Dideoxy-3-C-Methyl-L-Ribohexose)
3.1.4 L-Cladinose (2,6-Dideoxy-3-C-Methyl-3-O-Methyl-L-Ribohexose
3.2 C-(Hydroxyethyl)-and C-(Oxoethyl)-Branched Monosaccharides 147
3.2.1 D-Aldgarose
3.2.2 The Branched-Chain Sugars of the Quinocycline Antibiotics 147
3.3 C-Hydroxymethyl- and C-Formyl-Branched Monosaccharides: The Sugars
of the L-Streptose Family
4 Conclusion: Physiological Problems Originating from the Branched Carbon
Skeleton
References

5 Sugar Alcohols

R.L. E	Bieleski
--------	----------

1	Introduction
	1.1 General Comments on Polyols
	1.2 Summary of Earlier Reviews
2	Occurrence
	2.1 General Information
	2.2 Mannitol
	2.3 Sorbitol
	2.4 Other Hexitols
	2.5 The Tetritols and Pentitols
	2.6 The Heptitols and Octitols
	2.7 Other Polyols
	2.8 The Heterosides
	2.9 Phosphate Esters
3	Methods of Study
	3.1 General
	3.2 Preparations of Extracts
	3.3 Fractionation of the Extract
	3.4 Use of Chromatographic and Electrophoretic Procedures
	3.5 Methods of Estimation

4 Metabolism of Polyols										176
4.1 General										176
4.2 Photosynthetic Production of Polyol	s.									176
4.3 Metabolism of Polyols and Sugars										177
4.4 Enzymes of Polyol Metabolism .										178
4.5 Uptake of Polyols										180
5 Physiology and Role in Nature										180
5.1 Sugar Interconversion										180
5.2 Polyols as Redox Agents										181
5.3 Osmoregulation										181
5.4 Cryoprotection										
5.5 Transport and Storage										183
6 Future Directions of Research										
7 Conclusion										
References										
		•								

6 Cyclitols

F.A. LOEWUS and D.B. DICKINSON (With 4 Figures)

1	Introduction																		193
2	Nomenclature and St	ere	eoc	he	m	ist	rу												193
3	Occurrence																	•	195
4	Formation																•		200
5	Metabolic Processes																		201
6	Physiological Roles																		204
7	Concluding Remarks																		207
Refe	erences								•										208

7 Sucrose and Other Disaccharides

G. Avigad

1	Introduction	:17
2	Sucrose	18
	2.1 Introduction	
	2.2 Enzymes of Sucrose Biosynthesis	20
	2.2.1 General	
	2.2.2 Sucrose Synthase	:22
	2.2.3 Sucrose Phosphate Synthase	:29
	2.2.4 Sucrose Phosphatase	:31
	2.2.5 Assay of Sucrose-Synthesizing Enzymes	:32
	2.3 Sucrose Hydrolases (Invertases)	233
	2.3.1 General	
	2.3.2 The Enzymes	234
	2.3.3 Level and Location of Invertase in Tissues	237
	2.3.4 Invertase Inhíbitors	240
	2.3.5 Sucrose and the Synthesis of β -Fructofuranans	240
	2.4 Subcellular Site of Sucrose Synthesis	241
	2.4.1 The Compartment	241
	2.4.2 Carbon Fluxes in Leaves	243
	2.4.3 Carbon Fluxes in Storage Tissues	245
	2.5 Source of Carbon for Sucrose Synthesis	246
	2.5.1 Gluconeogenesis from Phosphoglycerate	246
	2.5.2 Photorespiration Intermediates	247
	2.5.3 Pyruvate and Related Intermediates	249
	2.5.4 Utilization of Storage Reserves	250

		2.5.5	Metabolic Controls	251
		2.5.6	¹³ C-Discrimination	
	2.6	Sucrose	Translocation	255
	2.7	Intracel	lular Compartmentation of Sucrose	255
	2.8	Sucrose	-Starch Transformation	258
		2.8.1	General Considerations	258
		2.8.2	Photosynthetic Tissues	250
		2.8.3	Rice	260
		2.8.4	Maize	200
		2.8.5	Wheat, Barley and Sorghum	201
		2.8.6	Potato Tubers	202
	2.9		as a Source of Nucleoside Diphosphate Glycosyls	202
		Litilizati	ion of Exogenous Sucross	203
	2.10	Sucrose	ion of Exogenous Sucrose	200
	2.11	2.11.1	Water Stress	207
		2.11.1	Water Stress	207
		2.11.2		
			Frost	
		2.11.4	High Temperature	269
		2.11.5	NH_4^+	
		2.11.6	Metal Toxicity	
		2.11.7	Potassium Deficiency	269
		2.11.8	CO_2 and SO_2	269
		2.11.9	Salt and Ion Concentration	269
		2.11.10	Infection and Symbiosis	270
		2.11.11	Low O_2	271
			Boron	
3	α,α-Ί		e (O-α-D-Glucopyranosyl-α-O-D-Glucopyranoside)	
	3.1	Occurre	nce	271
	3.2	Metabol		
		3.2.1	Synthesis	273
		3.2.2	Degradation	274
		3.2.3	Metabolic Pattern	275
4	Othe	er Nonre	ducing Disaccharides and Related Glycosides	276
	4.1	Disacch	arides	276
	4.2	Monogl	ycosides of Polyhydroxy Alcohols and Acids	276
		4.2.1	Monoglycoside-Alditols	276
		4.2.2	Glycosyl Glyceric Acids	278
		4.2.3	Glycoside-Cyclitols	278
5	Mal	tose	Glycoside-Cyclitols	279
č	5.1	General		279
	5.2	Occurre	nce	280
	5.3	Mechan	ism of Formation	282
	5.4		ism of Utilization	
	5.5	Datterns	of Metabolism in Leaves	284
	5.6	Titlingt	ion of Maltose as an External Source of Carbohydrate	287
6		Utilizati	saccharides	288
0				288
		Introdu	arides from Storage Oligosaccharides	289
	6.2		Melibiose	289
		6.2.1	Isomelibiose (Umbelliferobiose)	209
		6.2.2		
		6.2.3	Planteobiose	291
		6.2.4	Isolychnobiose	291
		6.2.5	Turanose	291
		6.2.6	Gentiobiose	292
	6.3		arides as Products of Polysaccharide Degradation	292
		6.3.1	β -Glucosides	292
		6.3.2	Mannosides	293

	6.3.3 Galad	tosides																							٠			294
	6.3.4 Lacto	se																										294
	6.3.5 Arab	inosides																										295
	6.3.6 Xylos	sides .	÷																									295
	6.3.7 Fruct	obioses																										295
	6.3.8 Hexu	ronides			÷	÷.																						295
	6.3.9 Chite	biose .																										296
6.4	Reducing I	Disaccha	rid	es	Pr	oc	luc	ced	łЬ	v (Gl	yc	osi	de	۰F	Iye	dro	ola	se	-C	ata	aly	ze	ď	Tr	an	s-	
6.4	Reducing I	Disaccha	rid	es	Pr	00	luc	ec	l b	y (Gl	yc	osi	.de	: F	Iyo	dre	ola	se	-C	ata	aly	ze	d '	Tr	an	s-	
6.4	Reducing I glycosylatic	Disaccha	rido	es	Pr	юс	luc	ec	l b	у (Gl	ус															-	296
6.4	Reducing I glycosylatic 6.4.1 D-Glu	Disaccha ons ucosides	rid	es	Pr	юс	luc	ec	łь	у (GI	ус	•			•	•	•	•	•	:	•	•	•	•	•	•	296 296
6.4	Reducing I glycosylatic 6.4.1 D-Gl 6.4.2 D-Ga	Disaccha ons ucosides lactoside	rid es	es	Pr · ·		luo	жес	l b	у (GI · ·	ус							• •					• •				296 296 297
6.4	Reducing I glycosylatic 6.4.1 D-Glu	Disaccha ons ucosides lactoside uctofurai	rid es	es	Pr · · es	юс	luo		lb	у (GI	ус						• • •										296 296 297 297

8 Oligosaccharides Based on Sucrose (Sucrosyl Oligosaccharides)

O. KANDLER and H. HOPF (With 16 Figures)

1 Introduction	. 348
2 Extraction, Isolation and Identification of Sucrosyl Oligosaccharides	
3 Occurrence of Sucrosyl Oligosaccharides and Their Distribution in Higher Plan	
3.1 Raffinose Series	
3.2 Lolium Trisaccharide	
3.3 Umbelliferose	
3.4 Lychnose and Isolychnose Series	
3.5 Planteose Series	
3.6 Kestoses (Fructosylsucroses) Series (Fructan)	
3.7 Gentianose	
4 Biosynthesis of Sucrosyl Oligosaccharides	
4.1 The Biosynthesis of the Raffinose Series	. 363
4.2 Biosynthesis of Lolium Trisaccharide	. 365
4.3 Biosynthesis of Umbelliferose	
4.4 Biosynthesis of the Lychnose and Isolychnose Series	366
4.5 Biosynthesis of the Planteose Series	
4.6 Biosynthesis of the Kestoses (Fructosylsucroses) Series (Fructan)	367
4.7 Biosynthesis of Gentianose	368
5 Degradation of Sucrosyl Oligosaccharides	368
6 Function of Sucrosyl Oligosaccharides	369
6.1 Storage	
6.2 Translocation	372
6.3 Frosthardiness	374
7 Concluding Remarks	376
References	379

9 Glycosylation of Heterosides (Glycosides)

G. FRANZ

I	Introduction	84
2	<i>O</i> -Glycosides	85
	2.1 Phenolic Glycosides	85
	2.1.1 Simple Phenolic Glycosides	85
	2.1.2 Flavonoid Glycosides	86
	2.1.3 Coumarin Glycosides	87
	2.1.4 Anthraquinone Glycosides	87

2.2 Glycosides of Terpenoids											387
2.2.1 Monoterpene Glycosides								ċ	Ċ	Ċ	387
2.2.2 Steryl Glycosides											388
2.2.3 Cardiac (Digitalis) Glycosides											388
2.2.4 Glycosylated Steroid Alkaloids	ι.										389
3 C-Glycosides											389
4 Conclusion											390
References											390

II. Macromolecular Carbohydrates - Occurrence, Metabolism, Function

10 Biosynthesis of Starch and Its Regulation

2.2.3 Galactomannans

2.3 The Xyloglucans

2.3.1 Distribution

2.3.2 Structures

J. PREISS (With 2 Figures)

1 Pertinent Enzymatic Reactions		397
1.1 Suggestive Evidence for the Major Route to Starch Formation		397
1.2 Sucrose Conversion to Starch in Reserve Tissues		399
2 Regulation of Starch Synthesis		400
2.1 General Considerations		400
2.2 Regulation of Leaf and Algal ADPglucose Pyrophosphorylases by		
3-P-Glycerate and Orthophosphate		400
2.3 Are the Allosteric Phenomena Operative in Vivo?		403
3 Properties of the Starch Biosynthetic Enzymes		405
3.1 ADPglucose Pyrophosphorylase		405
3.1.1 Enzyme from Higher Plants, Green Algae and Blue-Green Bacteri		405
3.1.2 Native and Subunit Molecular Weight of ADPglucose		
Pyrophosphorylase		407
3.1.3 ADPglucose Pyrophosphorylases of Nonphotosynthetic Plant		
Tissues		407
3.2 Properties of Starch Synthase (ADPglucose: $(1 \rightarrow 4)$ - α -D-Glucan 4- α -		
Glucosyltransferase)		408
3.2.1 Starch Bound and Soluble Starch Synthases		408
3.2.2 Requirements for Activity		
3.2.3 Multiple Forms of Soluble Starch Synthase		410
4 Branching (Q) Enzyme ($(1 \rightarrow 4)$ - α -Glucan 6-Glycosyl Transferase)		411
4.1 Mechanism of Action		
4.2 Multiple Forms of Plant Branching Enzymes		412
4.3 A Possible Function for the Multiple Forms of Starch Synthases and		
Branching Enzymes		413
References		
11 Reserve Polysaccharides Other Than Starch in Higher Plants		
H. MEIER and J.S.G. REID (With 8 Figures)		
		410
1 Introduction	•	418
2 Cell Wall Storage Polysaccharides in Seeds	·	419
2.1 Occurrence and Classification	·	419
2.2 The Mannan Group		419

 2.2.1 "Pure" Mannans
 420

 2.2.2 Glucomannans
 422

2.4 The Galactans	422
2.5 Others	433
3 Nonstarch Storage Polysaccharides of Vegetative Tissues	435
3.1 Occurrence and Classification	435
3.2 The Fructan Group	435
3.2.1 Fructans of the Dicotyledons	435
3.2.2 Fructans of the Monocotyledons	441
3.3 The Mannan Group	451
3.3.1 Occurrence and Chemistry	451
3.3.2 Cytology, Deposition, and Mobilization	456
3.4 Other Polysaccharides with a Possible Reserve Function	457
4 Biological Functions	457
4.1 Cell Wall Storage Polysaccharides in Seeds	458
4.2 Nonstarch Storage Polysaccharides in Vegetative Tissue	460
References	

12 Reserve Carbohydrates of Algae, Fungi, and Lichens D.J. MANNERS and R.J. STURGEON (With 1 Figure)

1 Introduction	172
1.1 Starch and Glycogen-Type Reserve Polysaccharides	173
1.2 $(1-3)$ - β -D-Glucans	174
1.3 Other Types of Reserve Carbohydrate	175
2 Reserve Carbohydrates of Marine Algae	175
2.1 α-D-Glucans	175
2.1.1 Floridean Starch	175
2.1.2 Starches	
2.2 β -D-Glucans	4 81
2.2.1 Laminarin	481
2.2.2 Eisenan	486
2.3 Fructans	
2.4 Xylans	487
2.5 Other Polysaccharides	489
3 Reserve Carbohydrates of Freshwater Algae	489
3.1 α-D-Glucans	490
3.1.1 Starches	490
3.1.2 Amylopectin and Phytoglycogen Type	492
3.2 β -D-Glucans	494
3.2.1 Paramylon	
3.2.2 Leucosin (Chrysolaminarin)	496
3.3 Other Polysaccharides	
4 Reserve Carbohydrates in Fungi	496
4.1 α-D-Glucans	496
4.1.1 Glycogen Type	496
4.1.2 Other $(1 \rightarrow 4)$ - and $(1 \rightarrow 6)$ - α -D-Glucans	501
4.1.3 (1→4)- α -D-Glucans	501
4.1.4 $(1 \rightarrow 3)$ - α -D-Glucans	502
4.1.5 Nigeran	503
4.2 β -D-Glucans	504
4.2.1 $(1 \rightarrow 3)$ - β -D-Glucans	504
4.3 Other Polysaccharides	505
5 Reserve Carbohydrates of Lichens	506
5.1 α -Glucans	506
5.2 β -D-Glucans	507
References	507

13 Plant Glycoproteins

R.R. SELVENDRAN and M.A.O'NEILL (With 11 Figures)

1 Introduction	- · -
1 Introduction	515
2 Natural Occurrence of Glycoproteins	516
3 Isolation, Fractionation, and Purification	516
3.1 Methods of Extraction: Practical Considerations	516
3.2 Isolation and Purification	520
4 Composition of Glycoproteins	521
5 Structural Studies	534
5.1 Types of Peptide-Carbohydrate Linkages	534
5.2 Structural Studies of the Carbohydrate Groups	536
6 Some of the Better-Defined Glycoproteins and Proteoglycans	536
6.1 Lectins (or Phytoagglutinins)	537
6.1.1 Soybean Agglutinin (SBA)	537
6.1.2 Lectins from Some Phaseolus vulgaris Species	540
6.1.3 Lima Bean Agglutinin	541
6.1.4 Sainfoin Agglutinin	543
6.1.5 Broad Bean Lectin	
6.1.6 Potato Lectin	545
6.2 Enzymes	547
6.2.1 Stem Bromelain	
6.2.2 Ficin	540
6.2.3 Horseradish Peroxidase	550
6.2.4 Invertases	
6.3 Storage Proteins	551
6.3.1 7S Protein of Soybean	
6.3.2 Kidney Bean Glycoproteins	
6.3.2 Visilin and Lagumin	555
6.3.3 Vicilin and Legumin	550
6.4 Toxins	
6.4.1 Ricin D	557 559
	222
6.5.1 Intracellular Hydroxypyroline-Rich Proteoglycan of Suspension-	
Cultured Tobacco Cells	559
6.5.2 Glycoproteins and Glycoprotein-Polysaccharide Complexes from the	
Leaves of Higher Plants	560
6.5.3 Arabinogalactan-Proteins from Higher Plants	561
6.6 Plant Cell Wall Glycoproteins	562
7 Glycoprotein Biosynthesis	564
8 Comparison of Higher Plant Glycoprotein Structure with Those of Micro-	
Organisms and Animals	565
8.1 N-Glycosidic Linkages	565
8.2 <i>O</i> -Glycosidic Linkages Through the Hydroxyl Group of Hydroxypyroline	
or Hydroxylysine	567
8.3 O-Glycosidic Linkage Through the Hydroxyl Group of Serine and	
Threenine	567
9 Concluding Remarks	568
References	569

14 Membrane Glycoproteins

D.J. BOWLES

	e Membrane as a Molecular Milieu													
	ucture and Mechanisms of Biosynthesis													
2.1	Structure		•	•		•	-	•				•		585
2.2	Mechanisms of Biosynthesis								·	•	•			586

2.2.1 Use of Model Systems	36
2.2.2 Synthesis of Integral Membrane Proteins	36
2.2.3 Cotranslational Glycosylation	37
2.2.4 Post-Translational Glycosylation	38
2.2.5 Synthesis of Peripheral Membrane Proteins	38
2.2.6 Synthesis of Mitochondrial and Chloroplast Membrane Proteins 58	39
2.2.7 Summary of Mechanisms of Biosynthesis	39
3 Intracellular Transport	90
3.1 General Principles	90
3.2 Regulation	90
3.2.1 Secretion Signals	91
3.2.2 Retention Signals	92
4 Plant Membrane Glycoproteins	93
4.1 Distribution	93
4.1.1 Cell Surface	
4.1.2 Intracellular Membranes: GA, ER and Tonoplast	
4.1.3 Chloroplasts and Mitochondria	
4.1.4 Microbodies: Glyoxysomes and Peroxisomes	<u>65</u>
4.1.5 Other Membranes	<u>95</u>
4.1.5 Other Mellioranes	06
4.2 Structure and Mechanisms of Biosynthesis	90 06
4.3 Intracellular Transport	90 :06
5 Future Perspectives	70 07
References	191

15 Glycolipids and Other Glycosides

A.D. ELBEIN (With 6 Figures)

I Introduction				601
2 Methods Used in the Isolation and Purification of Glycolipids				
3 Glycosyl Diglycerides				602
3.1 Mono- and Digalactosyl Diglycerides				603
3.2 Sulfoquinovosyl Diglyceride				606
4 Cerebrosides		÷		607
5 Phytoglycolipids				608
6 Steryl Glucosides				609
7 Lipid-Linked Saccharides				610
References				611

16 Steryl Glycosides

M. AXELOS and C. PÉAUD-LENOËL (With 1 Figure)

1 Introduction	613
2 Presence and Structure of Glycosylated Sterols in Plants	
3 Organ and Cellular Localization of Steryl Glucosides	
4 Biosynthesis and Degradation of Steryl Glucosides and Acylated Steryl	
Glucosides	616
5 The Intracellular Location of UDPGIc: Sterol Glucosyl Transferase and Steryl Glucoside Acylase	
6 Distribution of Steryl Glucosides and Acylated Steryl Glucosides as a Probe of Functions	
7 Steryl Glucosides and Acylated Steryl Glucosides in Plant Membranes	
8 Steryl Glucosides as Intermediary Sugar Carriers	625
9 Miscellaneous Activities of Steryl Glucosides in Plants	626
References	626

III. Physiological Processes

17 Transport of Sugar E. KOMOR (With 5 Figures)

1 Introduction
2 Classification of Sugar Transport Across Membranes
2.1 Passive Transport (Diffusion)
2.2 Mediated Diffusion
2.3 Active Transport
3 Energy Input for Active Sugar Transport
3.1 Equilibrium Shift by Substrate Conversion
3.2 Primary Active Transmost (45
3.2 Primary Active Transport
3.3 Secondary Active Transport
3.3.1 Proton-Symport in Plants
3.3.2 Proton-Translocating ATPases on Plasmalemma and Tonoplast 650
3.3.3 Sugar Uptake Driven by Sugar Efflux
4 Kinetic Properties of Sugar Transport Systems
4.1 Sugar Transport at Net and Steady-State Conditions
4.2 The Sugar Accumulation Ratio
4.3 Effect of Metabolic Inhibitors on Transport Kinetics
4.4 Influence of Proton-Gradient and Membrane Potential on Kinetics 657
5 Transport Proteins
6 Regulation of Sugar Transport
6.1 Induction and Repression
6.2 Transport Regulation by Direct Effectors
7 Relevance of Sugar Transport Systems for Plant Cells
8 Concluding Remarks
References

18 Secretion of Nectar

N. FINDLAY

1 Introduction																677
2 Route of Transport																
2.1 Apoplastic Transport																677
2.2 Symplastic Transport																678
3 Sites of Membrane Transport																679
3.1 At the Phloem																679
3.2 To the Exterior																679
3.2.1 Modifications Increa	asin	g t	he	Se	cr	etii	ng	Sui	fac	ce						679
3.2.2 Protoplast Specializa	atio	n														679
4 Metabolism																680
4.1 Sugar Interconversion																680
4.2 Energy Metabolism																681
4.3 Phosphatases																681
4.4 Sugar Transport																682
References																682
	• •	•	-	-			-									

19 Storage of Sugars in Higher Plants J. WILLENBRINK (With 3 Figures)

5.	WILLENBRINK (WITH 5 TIGHT00)	
1	Introduction	84
2	Functional Anatomy of Storage Tissues	84
3	Translocation of Sucrose to the Storage Organs	85
4	Storage of Sugars in Fruits	36

њ÷

5	Storage of Sucrose in Sugarcane	5
	Storage of Sucrose in Roots and Beets	
7	Fransfer of Sucrose into the Vacuole	2
8	Remobilization of Sugars from the Storage Compartment	ł
9	Concluding Remarks	ł
	nces	

20 Storage of Starch

C.F. Jenner	
-------------	--

1 Introduction	700
2 Occurrence of Starch	700
2.1 Global Data	700
2.2 Measurement of Starch	700
2.2.1 Occurrence – Dry Fruits	701
2.2.2 Occurrence – Fleshy Organs	703
3 Patterns of Accumulation	705
3.1 Temporal	705
3.2 Ontogenetic Patterns	706
3.2.1 Inception	706
3.2.2 Acceleration	707
3.2.3 The Grand Phase of Accumulation	708
3.2.4 Termination	711
4 Distribution of Starch	712
4.1 Within Storage Organs	712
4.1.1 Vegetative Organs	712
4.1.2 Seeds	713
4.2 Between Storage Organs	713
5 Plastids	714
5.1 Origin and Development	714
5.2 Developmental Homologies	715
5.3 Biochemical Attributes of Plastids	716
5.3.1 Nucleic Acids	716
5.3.2 Enzymes	716
5.4 Stability of Amyloplast Membranes	718
6 Granules	718
6.1 Morphology	718
6.2 Initiation of Granules	718
6.3 Growth of Granules	719
6.3.1 Growth and Lamellae	720
6.3.2 Mechanism of Growth	722
6.3.3 Growth and Changes in Composition	
6.3.4 Granule Size and Composition	723
7 Metabolism of Starch	723
7.1 Substrates and Precursors	723
7.2 Pathways of Synthesis	724
7.3 Degradation of Starch	725
7.4 The Turnover of Starch	726
7.5 Distribution of ${}^{14}C$	727
8 Regulatory Mechanisms	727
8.1 Intracellular Controls	728
8.2 Supply of Substrate	730
8.2.1 The Seed	730
8.2.2 Fruits, Roots, and Tubers	731
8.2.3 Control by Transport of Substrate	731
8.3 Growth of Storage Organs	732
	154

9 Environmental Influence												733
9.1 Irradiance												
9.2 Temperature												734
9.3 Water Deficit	,											734
9.4 Mineral Nutrition .												
10 Summary and Conclusions												735
References												

21 Control by External and Internal Factors Over the Mobilization of Reserve Carbohydrates in Higher Plants

P. HALMER and J.D. BEWLEY (With 18 Figures)

1 Introduction	48
	48
	49
	50
2.1.2 Gibberellins and the Synthesis of Other Carbohydrases in Barley	
	53
2.1.3 Gibberellin-Induced Enzymes in Other Cereal Grains	54
	55
2.2.1 Control by the Axis	56
2.3 Mannans in Seed Endosperms	62
2.3.1 Legumes	62
2.3.2 Lettuce	64
	67
	68
2.5 Raffinose-Oligosaccharides	68
3 Tubers, Roots, and Bulbs	70
3.1 Fructans in Jerusalem Artichoke Tubers, and Other Roots and Bulbs 7	70
3.2 Starch in Potato Tubers	73
4 Starch in Leaves $\dots \dots \dots$	77
5 Fleshy Fruits	81
5.1 Starch	81
5.2 Cell Wall Polysaccharides	81
6 Thermogenesis in Aroids	82
7 Changes in Stems, Roots, and Leaves Associated with Environmental Stresses 7	83
8 Starch in Organogenesis	84
References	86
Author Index	95
Species Index	87
Subject Index	95