Contents

I.	Introduction

М.	GIBBS and]	E. 1	LATZKO	(With 1	Figure)																					1
----	-------------	------	--------	---------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

II. CO₂ Assimilation

II A. The Reductive Pentose Phosphate Cycle

1. The Reductive Pentose Phosphate Cycle and Its Regulation J.A. BASSHAM (With 1 Figure)

Δ	Introduction									9
л. р	The Deductive Dentace Description Cycle	·	·	•	·	•	·	·	·	
D.	The Reductive Pentose Phosphate Cycle	·	·	•	·	٠	٠	·	·	12
	I. The Cyclic Path of Carbon Dioxide Fixation and Reduction	•	·	·	·	·	·	·	•	12
	II. Individual Reactions of the RPP Cycle		•							12
	III. Stoichiometry and Energetics									- 14
С.	Utilization of the Products of the RPP Cycle									15
	I. Starch Synthesis									15
	II. Triose Phosphate Export									16
	III. Glycolate Formation									17
D.	Mapping the RPP Cycle									17
	I. Early History									17
	II. First Products of CO ₂ Fixation									18
	III. Sugar Phosphates									18
	IV. Studies of Light-Dark and High-Low CO ₂ Transients									19
	V. Discovery of Enzymes of the RPP Cycle									20
E.	Metabolic Regulation of the RPP Cycle									21
	I. In Vivo Kinetic Steady-State Studies with Labeled Substrates									21
	II. Light-Dark Regulation									21
	III. Regulation of the RPP Cycle During Photosynthesis									27
F.	Concluding Remarks									28
	erences									28

2. The Isolation of Intact Leaf Cells, Protoplasts and Chloroplasts R.G. JENSEN

A.	Introduction										- 31
B.	Isolation of Plant Leaf Cells and Protoplasts										32
	I. Mechanical Methods										32
	II. Enzymic Methods										- 32
	III. Cell and Protoplast Isolation from C ₃										
С.	Isolation of Intact Chloroplasts										- 35
	I. Plant Material and Media										- 35
	II. Isolation Methods										- 36
	III. Chloroplast Isolation from Other Plan	ts									- 38
Re	ferences										39

3. Studies with the Reconstituted Chloroplast System R.MCC. LILLEY and D.A. WALKER (With 1 Figure)

A. Reconstituted Chloroplast Systems		. 41
I. Introduction		. 41
II. Definition		. 42
III. Methods of Preparation		. 43
IV. Activities Achieved		. 43
V. Advantages and Drawbacks.		. 44
B. Factors Affecting the Activity of Partial Reaction Sequences in Reconstituted C	hlor	r0-
plast Systems.		. 44
I. The Light Reactions		. 44
II. The Conversion of 3-Phosphoglycerate to Triose Phosphate		
III. The Conversion of Triose Phosphate to Pentose Phosphate		. 48
IV. The Conversion of Ribulose-5-Phosphate to Ribulose-1, 5-Bisphosphate		. 49
V. The Fixation of Carbon Dioxide		. 49
VI. Autocatalysis		. 50
C. Reconstituted Chloroplast Systems and the Regulation of Photosynthesis		
I. The Role of Magnesium, pH and Reductants		. 51
II. The Role of the ATP/ADP Ratio		. 52
References		. 52

4. Autotrophic Carbon Dioxide Assimilation in Prokaryotic Microorganisms E. OHMANN (With 1 Figure)

Α.	Introduction	54
B.	Principles of Autotrophic Carbon Dioxide Assimilation in Prokaryotic Cells	55
С.	The Pathway of Carbon Dioxide Assimilation in Green Sulfur Bacteria	56
D.	The Pathway of Carbon Dioxide Assimilation in Purple Bacteria	58
E.	The Pathway of Carbon Dioxide Assimilation in Blue-Green Algae	59
F.	The Pathway of Carbon Dioxide Assimilation in Chemolithotrophic Bacteria.	60
G.	Regulatory Aspects of Carbon Dioxide Assimilation in Prokaryotic Microorganisms.	61
Re	ferences	65

5. Light-Enhanced Dark CO₂ Fixation

S. MIYACHI (With 5 Figures)

A. Light-Enhanced Dark CO ₂ Fixation in C ₃ Plants	68
I. Introduction	68
II. Capacity for Light-Enhanced Dark CO ₂ Fixation	68
III. Products	69
IV. RuBP, NADPH, and ATP Levels	70
V. Fate of PGA	72
VI. Higher Plants	73
B. Light-Enhanced Dark CO ₂ Fixation in C ₄ Plants	73
References	75

II B. The C₄ and Crassulacean Acid Metabolism Pathways

6. The C₄ Pathway and Its Regulation T.B. RAY and C.C. BLACK (With 4 Figures)

Α.	Discovery of C ₄ Photosynthesis												77
В.	Kranz Leaf Anatomy		,										78
	I. Variations in Leaf Anatomy		•										79

C. Environmental Regulation of C ₄ Photosynthesis	81
I. Light Intensity	82
II. CO_2 Concentration	82
III. O_2 Concentration	83
IV. Temperature	83
V. Water	83
VI. Salinity	. 84
VII. Nitrogen Supply.	84
D. Biochemical Schemes for the C ₄ Pathway	84
E. Regulation via Enzymatic and Metabolic Compartmentation into Leaf Cell Types.	86
F. Efficiency of C ₄ Leaf Photosynthesis	89
I. CO ₂ Pools	89
II. CO ₂ Trapping	89
III. CO ₂ Fixation by Bundle Sheath Cells	- 90
G. C ₃ -C ₄ Intermediate Plants	92
H. Criteria for the Presence of C ₄ Photosynthesis	95
I. Conclusions in the Regulation of C ₄ Photosynthesis in Leaves	97
References	

7. C₄ Metabolism in Isolated Cells and Protoplasts G.E. EDWARDS and S.C. HUBER (With 1 Figure)

A. Introduction						102
B. Three Groups of C_4 Plants.						102
C. Localization of Enzymes of C ₄ Metabolism in C ₄ Plants						102
I. Intercellular Localization						102
II. Intracellular Localization						
D. Criteria for Intactness of Cellular Preparations						104
I. Mesophyll Preparations						
II. Bundle Sheath Preparations.						
E. Variations in C ₄ Metabolism						106
I. Mesophyll Cells of C ₄ Plants						106
II. Bundle Sheath Cells of C ₄ Plants						107
F. Energetics in C_4 Metabolism						108
G. Future Studies on C ₄ Metabolism with Cells and Protoplasts						109
I. Transport Studies						109
II. Screening for Inhibitors of C ₄ Photosynthesis						110
References	-	•				111

8. The Flow of Carbon in Crassulacean Acid Metabolism (CAM) M. KLUGE (With 4 Figures)

A. Introduction													
B. Basic Phenomena of CAM				•	•								113
C. The Metabolic Sequences of CAM													114
I. The Flow of Carbon During the Night													
II. The Flow of Carbon During the Day													118
D. Regulation of Carbon Flow in CAM						•							122
E. Conclusions		•				•	• •	•			•		123
References		•		•	•	•				•	•		124

9. CAM: Rhythms of Enzyme Capacity and Activity as Adaptive Mechanisms O. QUEIROZ (With 9 Figures)

	Introduction					
В.	Endogenous Versus Nonendogenous Rhythms: A Necessary Distinction	ı .		•	•	126

C. Enzyme Capacity and Enzyme Activity: Two Distinct Levels of Contra	ol					127
D. Rhythms Connected with CAM						128
I. Components of the Malate Rhythm						128
II. CO_2 Uptake and CO_2 Output						
III. PEP Carboxylase						
IV. Malate Dehydrogenase						132
V. Malic Enzyme (NADP)					•	132
VI. Aspartate Aminotransferase						133
VII. Enzymes of the Glycolytic Pathway						133
VIII. Tricarboxylic Acid Cycle						133
E. Working Hypothesis and Models			•		•	133
I. Seasonal Adaptation		-				133
II. Timing CAM						135
References						137

10. δ^{13} C as an Indicator of Carboxylation Reactions J.H. TROUGHTON

A. Introduction	
B. Carbon Isotope Fractionation and Its Measurement	140
C. Variation in δ^{13} C Values Between Plants.	141
I. Discrimination Caused by the Photosynthetic Pathway	141
II. Variation in δ^{13} C Values Between Plant Varieties and Species	141
III. Variation in δ^{13} C Values Within a Plant	142
IV. Fractionation Associated with Carboxylation Enzymes	
V. Compartmental Organisation and Isotope Fractionation	
VI. Respiration	
D. Environmental Effects on the δ^{13} C Value of Plants	144
I. Temperature	
II. Carbon Dioxide Concentration	144
III. Oxygen Concentration Effects on Discrimination	
IV. Light Level	
V. Availability of Water	
VI. Salinity and Carbon Isotope Fractionation	
E. Implications of Variation in δ^{13} C Values Among Plant Species	146
I. Natural Products	
II. Paleoecology	
III. Physiology – Plant, Animal, and Human	
F. Conclusions	
References	

II C. Factors Influencing CO₂ Assimilation

11. Interactions Between Photosynthesis and Respiration in Higher Plants D. GRAHAM and E.A. CHAPMAN (With 2 Figures)

A. Introduction																150
I. The Relevance of Photosynthetic an	d F	Res	spi	ra	to	ry	In	ter	ac	tic	ons	5				150
B. Physiological Observations																151
I. Plants with C ₃ -Type Photosynthesis																151
II. Plants with C ₄ -Type Photosynthesis																153
C. Biochemical Observations																153
I. Plants with C ₃ -Type Photosynthesis																153
II. Plants with C ₄ -Type Photosynthesis																159
D. General Conclusions																160
References																160

12. The Interaction of Respiration and Photosynthesis in Microalgae E.H. EVANS and N.G. CARR (With 2 Figures)

Α.	Introduction
	The Kok Effect
C.	Electron Transport Mechanisms for the Kok Effect
	I. General Considerations
	II. Prokaryotes
	III. Eukaryotes
	The Interaction of Oxygen with the Photosynthetic Electron Transport Chain 167
E.	Metabolically Mediated Control of Oxygen Uptake
F.	Synopsis
Re	ferences

13. Effect of Light Quality on Carbon Metabolism N.P. VOSKRESENSKAYA

Α.	Introduction	174
	Principal Effects of Blue and Red Light on Carbon Metabolism	
С.	Specific Features of Blue Light Action on Carbon Metabolism	175
	I. In the Absence of Photosynthesis	175
	II. In the Presence of Photosynthesis	
D.	Direct Regulation of Certain Enzymes by Blue Light in Vitro and Its Possible Realization	
	in Vivo	176
E.	Long-Term Effects of Light Quality on Biosyntheses and Chloroplast Organization .	177
F.	Conclusion.	179
Ref	erences	179

14. Photoassimilation of Organic Compounds

A. Introduction														181
B. Definitions.						·	•		·					181
C. Pathways and Products of Photometabolism														
D. Photoassimilation of Acetate														
E. Photoassimilation of Glucose.														
References		٠	•	·	·	·	·	•	•	·	·		•	187

15. Biochemical Basis of Ecological Adaptation A. SHOMER-ILAN, S. BEER and Y. WAISEL

A. Introduction				. 190
B. Biochemical Variations in C ₃ Plants				. 191
C. Biochemical Adaptation of CAM and C ₄ Plants				. 192
I. Adaptive Value of C_4 Metabolism				. 194
D. Induced Variations in Carbon Fixation Pathways				. 196
I. Effects of Age, CO ₂ -Concentration, and Nitrogen Nutrition.				. 196
II. Effect of NaCl				
E. Concluding Remark.	•			. 199
References				

II D. Regulation and Properties of Enzymes of Photosynthetic Carbon Metabolism

16. Light-Dependent Changes of Stromal H⁺ and Mg²⁺ Concentrations Controlling CO₂ Fixation H.W. HELDT (With 1 Figure)

A.	Background	202
B.	Measurement of the pH in the Stroma and the Thylakoid Space of Intact Spinach	
	Chloroplasts	202
C.	pH Dependence of CO ₂ -Fixation	203
D.	Measurement of the Stromal Mg ²⁺ Concentration in Intact Spinach Chloroplasts .	204
E.	Mg^{2+} Dependence of CO_2 Fixation	205
F.	Concluding Remarks	206
Re	eferences	206

17. Ribulose-1,5-Bisphosphate Carboxylase

T. AKAZAWA (With 6 Figures)

A.	Fraction-1-Protein and RuBP Carboxylase													208
В.	Molecular Structure of RuBP Carboxylase													210
C.	Reaction Mechanism and Regulation													214
D.	RuBP Oxygenase													219
E.	Biosynthesis of RuBP Carboxylase										•			222
Ref	erences			•				•	•			•	•	225

18. Carbonic Anhydrase R.P. POINCELOT

Α.	Introduction	0
Β.	Characterization	0
	I. Histochemical and Other Detection	0
	II. Occurrence	0
	III. Location	1
	IV. Levels of Activity	51
	V. Isolation and Purification	52
	VI. Enzymic Parameters	52
С.	Function	56
	I. Chloroplast Envelope Membrane Permease	96
	II. Carbonic Anhydrase – RuBP Carboxylase Complex	36
	III. Proton Source, Buffering Capacity and Ionic Flux Regulation	37
Re	ferences	37

19. Enzymes of the Reductive Pentose Phosphate Cycle E. LATZKO and G.J. KELLY (With 1 Figure)

	Introduction	
B.	Characteristics of Regulatory Enzymes)
С.	Activities and Location of Calvin Cycle Enzymes)
D.	Glycerate-3-P Kinase	l
	Glyceraldehyde-3-P Dehydrogenase	
F.	Triose-P Isomerase and Aldolase	5
G.	Fructosebisphosphatase and Sedoheptulosebisphosphatase	5
H.	Transketolase, Pentose-P Epimerase, and Pentose-P Isomerase	7
I.	Ribulose-5-P Kinase	7
J.	Concluding Remarks	3
Re	ferences)

20. Enzymes of C₄ Metabolism J. COOMBS (With 2 Figures)

A. Introduction												251
B. Isolation of Enzymes from Tissues of C ₄ Plan	ts.											252
C. Carboxylation – PEP Carboxylase												252
I. General Characteristics												252
II. Physical Properties and Kinetics												
III. Regulation, Activation and Inhibition .												
D. Formation of C ₄ Acids by Reduction and Tra	nsa	m	ina	itic	on							255
I. Reduction												255
II. Transamination	•											257
E. Decarboxylation												258
I. NADP-Malic Enzyme (E.C.1.1.1.40)									•			258
II. NAD-Malic Enzyme (E.C.1.1.1.39)												258
III. PEP Carboxykinase (E.C.4.1.1.49)						•						259
F. Substrate Regeneration												
I. Pyruvate P_i Dikinase (E.C.2.7.9.1)												260
II. Alanine Aminotransferase (E.C.2.6.1.2).												
G. Summary						•			•	•		261
References												261

21. Enzymes of Crassulacean Acid Metabolism P. DITTRICH

A. Introduction																	263
B. Enzymes of Starch Metabolism																	263
C. Glycolytic Enzymes							•	,				•					264
D. Gluconeogenic Enzymes									,			•	·	·		·	265
E. Carboxylating Enzymes												•					265
I. The Formation of Malate							•	•				•	•	•		·	265
II. The Photosynthetic Fixation of CO ₂ .						•								٠		•	267
F. Decarboxylating Enzymes							•										267
I. The Decarboxylation of Malate																	267
II. The Decarboxylation of Oxaloacetate				•		•	•	•			·	•		·		•	268
G. Respiratory Enzymes						•						•					269
H. Conclusion	-							•									269
References			·		•	•	•		•	•		•		•	·	•	270

22. Interaction Between Photochemistry and Activity of Enzymes L.E. ANDERSON (With 4 Figures)

Α.	Introduction														271
Β.	Light-Mediated Modulation														271
	I. Occurrence														271
	II. Metabolic Significance									•					271
	III. Mechanism														272
	IV. Special Cases														278
С.	Dark Modulation														278
D.	Thylakoid-Generated Effector	°S													279
	L nH									•					279
	II. Mg^{2+}								•				•		279
	III. Energy Charge														279
E.	Conclusion.														280
Re	erences														280

II E. Metabolism of Primary Products of Photosynthesis

23. N	1etabolism	of	Starch	in	Leaves
-------	-------------------	----	--------	----	--------

J. PREISS and C. LEVI (With 2 Figures)

A. Introduction	282
B. Starch Biosynthesis	282
I. Reactions Involved in Starch Biosynthesis	
II. The Predominant Pathway of Starch Synthesis	
III. Regulation of Starch Biosynthesis	285
IV. Properties of the ADPglucose: 1,4- α -D-glucan 4- α Glucosyltransferase	
V. α-1,4-Glucan: α-1,4-Glucan 6-Glycosyl Transferase (Branching or Q Enzyme).	296
VI. Remaining Problems in Starch Synthesis	298
C. Starch Degradation	299
I. Reactions Involved in Starch Degradation	299
II. Degradation of Intact Granules in Vitro	304
III. Starch Degradation in Vivo: Germinating Seeds	
IV. Starch Degradation in Vivo: Leaves	
References	

24. The Enzymology of Sucrose Synthesis in Leaves C.P. WHITTINGHAM, A.J. KEYS, and I.F. BIRD

A. Introduction	. 313
B. Physiological Relationships of Sucrose in Leaves	. 314
C. Enzymology	
I. Sucrose Phosphate Synthetase E.C.2.4.1.14 and Sucrose Synthetase E.C.2.4.1.1	3 315
II. Sucrose Phosphatase (E.C.3.1.3.24)	. 317
III. UDPglucose Pyrophosphorylase (E.C.2.7.7.9)	
IV. Sucrose Phosphorylase (E.C.2.4.1.7)	
V. Invertase (E.C.3.2.1.26).	
VI. Enzyme Control Mechanisms	. 318
D. Intracellular and Intercellular Site of Sucrose Synthesis in Leaves	
I. Chloroplast or Cytoplasm?	. 320
II. Intercellular Localization of Sucrose Synthesis in C ₄ Plants	
III. Intercellular Distribution Between Cells Containing Chlorophyll and Vascula	
Tissue	. 322
References	

II F. Glycolic Acid and Photorespiration

25. Glycolate Synthesis

E. BECK

	Introduction: Glycolate Formation, Photorespiration and the Warburg Effect	
Β.	Environmental Factors Affecting Glycolate Synthesis	327
С.	Mechanisms of Glycolate Formation	328
	I. Reductive Glycolate Formation	328
	II. Oxidative Glycolate Synthesis	
Đ.	Photosynthetic Glycolate Formation in Vivo; Which Reaction Predominates?	332
	I. Glycolate Synthesis by C ₃ Plants	332
	II. Glycolate Formation by C_4 Plants	335
Ε.	Conclusion: The Inhibition of Glycolate Formation by Some Common Metabolites	
	- an Open Question	335
Re	ferences	335

26. Glycolate Metabolism by Higher Plants and Algae N.E. TOLBERT (With 1 Figure)

Α.	Introduction	338
B.	Glycolate Biosynthesis	340
	I. Properties of Ribulose-P2 Carboxylase/Oxygenase for Phosphoglycolate Biosyn-	• • •
	thesis	340
	II. Phosphoglycolate Phosphatase and Phosphoglycerate Phosphatase	340
С.	Glycolate Pathway	342
	I. Pathways in Peroxisomes	342
	II. Mitochondrial Interconversion of Glycine and Serine.	343
D.		344
		344
		345
		346
E.		346
F.		347
G.	The Glycolate Pathway in Algae	348
		348
		348
		349
		351
Ref		351

27. Photorespiration: Studies with Whole Tissues I. ZELITCH (With 2 Figures)

A. Discovery of Photorespiration	853
	\$54
	54
	354
III. CO_2 and ¹⁴ CO_2 Efflux in CO_2 -Free Air	56
IV. Short-Time Uptake of ${}^{14}\text{CO}_2$ and ${}^{12}\text{CO}_2$.	57
the mughtude of r notorespiration in generation	58
C. Photorespiration in Algae and Submerged Aquatic Plants	58
D. Photorespiration in Callus, Isolated Plant Cells, and Protoplasts	59
E. The Control of Photorespiration	
I. The Energetics and Possible Origins of Photorespiration	61
II. Biochemical Inhibition of Glycolate Oxidation	62
III. Biochemical Inhibition of Glycolate Synthesis	63
IV. The Metabolic Regulation of Photorespiration	64
References	

28. Photorespiration: Comparison Between C_3 and C_4 Plants D.T. CANVIN (With 12 Figures)

A. Intro	duction									•										•					368
B. Term	inology and Perception											•	·	·		·		·		·		·		·	368
C. Meas	urement of Photorespira	ation .												•	•		•		•	•		•			370
D. Chara	acteristics of Photorespi	ration	in	C_{i}	, F	'la:	nts	5.		-															371
I.	Rates of Photorespirat	ion .															•					•			372
II.	The Post-Illumination	Burst									•		•						•						373
III.	Compensation Point .											•	•	•		·		·	•	·	·	·	·	•	373
IV.	Effect of CO, Concent	ration						•			•	•			·		·		٠	•		·			374
V.	Effect of O_2											•			٠			•	•						374
VI.	Effect of Temperature			·	•		•		•	•	•	•	•	•	·	·	·	·	·	•	·	·	·	•	375

	VII. Interaction of Oxygen, Carbon Dioxide, and Temperature	;
	VIII. Effect of Light Intensity	
	IX. The Glycolate Pathway)
E.	Photorespiration in C ₄ Plants	3
	I. Photorespiration as CO ₂ Evolution	
	II. Photorespiration as Oxygen Uptake	
	III. Photorespiration in C ₄ Plants – Indirect Evidence	5
	IV. Evidence Against Photorespiration in C ₄ Plants	
F.	Concluding Remarks	
	ferences	

III. Ferredoxin-Linked Reactions

1.	Transhydrogenase

P. BÖGER (With 1 Figure)

A. Introduction and Definitions			. 399
B. Soluble Flavoproteins with Transhydrogenase Activity			. 400
I. Bacterial Enzymes			
II. Ferredoxin-NAD(P) ⁺ Reductases			
C. Membrane-Bound (Particulate) Transhydrogenases			. 405
I. Mitochondrial and Bacterial Transhydrogenases, General Aspe			
II. Transhydrogenase of Photosynthetic Bacteria			
References			. 407

2. Oxygen Activation and Superoxide Dismutase in Chloroplasts E.F. ELSTNER (With 2 Figures)

Α.	Introduction	410
Β.	Principles of Oxygen Activation	410
	Superoxide Anion and Superoxide Dismutase.	
		410
	II. Superoxide Dismutase in Chloroplasts	411
	III. Monovalent Oxygen Reduction in Chloroplasts	
D.	Determination of the Products of Oxygen Reduction	
	Possible Functions of Reduced Oxygen Species in Chloroplasts	
	I. Desaturation of Fatty Acids	
	II. Hydroxylation of Aromatic Compounds	
	III. Photorespiration	
	IV. Ethylene Formation	
F.	Conclusions	
	ferences	

3. Ferredoxin-Linked Carbon Dioxide Fixation in Photosynthetic Bacteria B.B. BUCHANAN (With 2 Figures)

Α.	Introduction													416
Β.	Ferredoxin-Linked Carboxylation Read	cti	on	IS										417
	I. Synthesis of Pyruvate													417
	II. Synthesis of x-Ketoglutarate													418
	III. Synthesis of α -Ketobutyrate.													418
	IV. Synthesis of Phenylpyruvate													418
	V. Synthesis of x-Ketoisovalerate.													419
	VI. Synthesis of Formate													
C.	The Reductive Carboxylic Acid Cycle													420
	Concluding Remarks													
	ferences													

4. Reduction of Nitrate and Nitrite

B. VENNESLAND and M.G. GUERRERO

A. Introduction	5
B. Reduction of Nitrate to Nitrite	
I. Assimilatory Nitrate Reductase of Eukaryotes	6
II. Assimilatory Nitrate Reduction in Prokaryotes	
C. Reduction of Nitrite to Ammonia	l
I. Nitrite Reductase of Photosynthetic Cells	
II. Nitrite Reductase of Nonphotosynthetic Cells	3
D. Control of Nitrate Reduction	
I. Synthesis and Degradation of Enzymes	3
II. Utilization of Nitrate	5
III. Reversible Inactivation of Nitrate Reductase	5
IV. Localization of Enzymes and Effect of Light and Carbohydrate on Nitrate	
Utilization	7
V. Conclusions	9
References	9

5. Photosynthetic Ammonia Assimilation P.J. LEA and B.J. MIFLIN (With 3 Figures)

A. Introduction								445
B. Photosynthetic Ammonia Assimilation in Intact Organisms.								446
C. Localization of Enzymes Involved in Ammonia Assimilation								447
I. Glutamate Dehydrogenase								
II. Glutamine Synthetase								
III. Glutamate Synthase (GOGAT)								
D. Photosynthetic Ammonia Assimilation in Isolated Intact Chl	or	op	las	ts				450
E. Photorespiratory Ammonia Evolution and Reassimilation .								
F. Conclusions								
References								455

6. N₂ Fixation and Photosynthesis in Microorganisms W.D.P. STEWART (With 1 Figure)

A. Introduction					457
B. Distribution of Nitrogenase Among Photosynthetic Prokaryotes					457
C. Oxygen Sensitivity and Protection of Algal Nitrogenase					458
D. Requirements for an Active Nitrogenase .					460
E. The Provision of Reductant and ATP in Photosynthetic Prokaryotes					461
I. Electron Donation				,	461
II. The Production of ATP					462
F. The Nitrogen-Fixing System of Heterocysts of Anabaena cylindrica					463
G. Nitrogenase and Its Possible Regulation by Glutamine Synthetase.				,	467
References					468

7. Symbiotic N_2 Fixation and Its Relationship to Photosynthetic Carbon Fixation in Higher Plants B. QUEBEDEAUX (With 2 Figures)

A.	Introduction	472
В.	Relationship of N_2 Fixation to Carbon Assimilation	472
	I. Nitrogenase.	472
	II. ATP and Reductant	474

III. Ammonia Assimilation			475
IV. Photosynthate as the Limiting Factor			476
V. Translocation and Partitioning of Nitrogen and Carbon Assimilates			477
References			479

8. Photosynthetic Assimilation of Sulfur Compounds A. SCHMIDT (With 1 Figure)

A. Introduction			
B. Observations with Whole Organisms			481
C. Observations with Isolated Organelles			482
D. Cell-Free Systems			483
I. Sulfate Activation and Degradation of Active Sulfate			483
II. Transfer of Sulfate from Sulfonucleotides for Further Reduction.			485
III. Reduction to the Level of Sulfide			487
IV. Biosynthesis of Cysteine			489
E. Regulation of Assimilatory Sulfate Reduction in Photosynthetic Organisms			
References			

9. Hydrogen Metabolism

e* 1

A. BEN-AMOTZ (With 1 Figure)

А.	Introduction) 7
В.	Hydrogenase) 8
	I. Occurrence of Hydrogenase in Photosynthetic Cells) 8
	II. Adaptation and Deadaptation	
	III. Cell-Free Preparations of Hydrogenase	
С.	Evolution of H_2	
	I. Dark Evolution of H_2	
	II. H_2 Photoevolution $1 \dots 1 \dots 1 \dots 1 \dots \dots$)()
	III. H ₂ Evolution by Blue-Green Algae)2
D.	Consumption of H_2	
	I. Dark Absorption of H_2	
	II. Photoreduction)3
Re	ferences)4
A	athor Index)7
S	ibject Index	59