Contents

List of Abbreviations				• •	•	 •	• •	• •	•	 •	•	·	·	•	•	 XXI	Π
Introduction																	
A. TREBST and M. AVRON	(With	1 F	igure	e) .					 								1

I. History

Photosynthesis 1950–75: Changing Concepts and Perspectives D.I. ARNON (With 16 Figures)

A.	Introduction
Β.	Photosynthesis Research at Midcentury
C.	Research Past Midcentury: Some Major Advances
D.	CO ₂ Assimilation: Experiments with Whole Cells
E.	Evidence for CO ₂ Assimilation by Isolated Chloroplasts
F.	Investigations of Light Reactions of Photosynthesis: Experimental Advantages of
	Chloroplasts Over Whole Cells
G.	Discovery of Photosynthetic Phosphorylation
H.	The Concept of a Light-Induced Electron Flow
I.	Noncyclic Photophosphorylation
J.	Role of Cyclic Photophosphorylation: Early Views
Κ.	Physical Separation of Light and Dark Phases of Photosynthesis in Chloroplasts 22
L.	Ferredoxins in Chloroplasts and Bacteria
	Role of Ferredoxin in Noncyclic Photophosphorylation
N.	Ferredoxin as the Physiological Catalyst of Cyclic Photophosphorylation 30
О.	Stoichiometry and Regulation of Ferredoxin-Catalyzed Photophosphorylations
P.	Other Ferredoxin-Dependent Reactions in Photosynthetic Cells
Q.	Multiple Ferredoxins: Soluble and Bound
Ŕ.	Photosynthetic Electron Carriers
S.	Two Photosystems in Plant Photosynthesis: Origins of a Concept
	Two Photosystems: Facts, Hypotheses, and Dogma
	Concluding Remarks
	ferences

II. Electron Transport

1. General

1a. Physical Aspects of Light 1	Harvesting, Electron	Transport	and	Electrochemical	Poten-
tial Generation in Photosynthes	is of Green Plants				
W. JUNGE (With 11 Figures)					

Α.	Introduction	59
Β.	Antennae	
	I. Physically Different Types of Chlorophylls in Chloroplasts	62
	II. Resonant Energy Transfer	65

III. Distinctive Properties of Antennae Systems I and II	. 66
IV. Size and Interaction of the Antennae Systems	. 68
V. Protective Reactions	
VI. Structure	
C. Electron Transport	. 72
I. Photochemical Reactions	. 75
II. Non-Photochemical Components	. 77
D. Electrochemical Potential Generation	
I. The Generation of an Electric Potential	
II. Proton Translocation	. 84
References	. 88

1b. Electron Transport in Chloroplasts

J.H. GOLBECK, S. LIEN, and A. SAN PIETRO (With 4 Figures)

A.	General
B.	Photosystem II
	I. The Oxidizing Side of PS II
	II. The Reaction Center Complex of PS II
	III. The Reducing Side of PS II
C.	Photosystem I
	I. The Primary Acceptor of PS I
	II. The Reducing Side of PS I
	III. The Oxidizing Side of PS I
Re	erences

2. Porphyrins, Chlorophyll, and Photosynthesis D. MAUZERALL (With 2 Figures)

Α.	Introductio	n																	117
B.	Structure																		117
C.	Function																		121
D.	Evolution																		122
E.	Summary																		123
Re	ferences .																		124

3. Light Conversion Efficiency in Photosynthesis R.J. RADMER and B. KOK (With 3 Figures)

Α.	Basic Principles	:5
В.	The Maximum Efficiency of Photosynthesis: Quantum Yields Under Optimum Condi-	
	tions	
	ATP Production and Utilization	0
D.	. Quantum Yields of Growing Cells and Photosynthetic Productivity Under Natural	
	Conditions	1
Re	eferences	4

4. P-700

G.E. HOCH (With 2 Figures)

Α.	General																				136
Β.	Optical Properties .	·	·	•	•	•	•	•	•	•	·										137
	Oxidation-Reduction																				
D.	Models																				140
E.	Localization of P-700		•																		141

F. Orientation of P-700																			
G. Oxidation of P-700																			
H. Reduction of P-700																			
References	•	•	•					•	•	•		•		•	•	•			146

5. Chlorophyll Fluorescence: A Probe for Electron Transfer and Energy Transfer W.L. BUTLER (With 2 Figures)

A. Introduction	149
B. Fluorescence Yield and Electron Transport	149
I. A (Q)	149
II. C-550	151
III. P-680	153
IV. The Back-Reaction	154
C. The Photochemical Model	154
I. Photosystem II	154
II. Photosystem I	157
III. The Photochemical Apparatus	157
IV. Energy Distribution Between PS I and PS II	159
D. Appendix	162
References	166

6. Electron Paramagnetic Resonance Spectroscopy E.C. WEAVER and G.A. CORKER (With 1 Figure)

Α.	Introduction
	EPR Techniques
C.	EPR Studies in Photosynthesis
	I. Bacterial Photosynthesis
	II. Signals in Photosystem II (PS II)
	III. Signals in Photosystem I (PS I)
	IV. Spin Labels
D.	Conclusion
Re	ferences

7. Primary Electron Acceptors R. MALKIN (With 4 Figures)

A.	Chloroplast Photosystem I	179
	I. Background	179
	II. Electron Paramagnetic Resonance (EPR) Studies of Bound Iron-Sulfur Proteins	179
	III. Flash Kinetic Spectroscopy of P-430	181
	IV. Relationship of P-430 to Bound Iron-Sulfur Protein	182
Β.	Chloroplast Photosystem II	183
	I. X-320	
	II. C-550	184
	III. On the Chemical Identity of the Photosystem II Primary Electron Acceptor	185
Re	ferences	185

8. Oxygen Evolution and Manganese B.A. DINER and P. JOLIOT (With 2 Figures)

A.	Introduction																	187
Β.	Photosystem II																	188
С.	Kinetic Model of O ₂ Production			•	•	-	•	•	•	•	•	•		•	•	•		191

D.	Interconversion of S-States in the Dark	193
E. '	Turnover Reactions of Photosystem II	195
F.	Phenomena Related to the S-States	197
G.	Chemical Treatments that Reversibly Affect the O ₂ Evolving Site	198
	Localization of the Oxygen-Evolving Site	
Ref	ferences	203

9. Ferredoxin

D.O. HALL and K.K. RAO (With 3 Figures)

A.	Introduction														206
	Extraction and Purification														
С.	Assay									•					207
D.	Occurrence and Biosynthesis														208
E.	Properties														208
F.	Nature of the Active Center													-	211
	Stability														
H.	Biological Function														213
I.	Immunological Studies														214
	Homology in the Primary St														
	ferences														

10. Flavodoxin

H. BOTHE

A. Biological Properties																	217
B. Chemical Properties																	219
References	•		•	•	•	•	•	•		•				•	•		220

11. Flavoproteins G. Forti

Α.	Introduction	222
В.	Isolation and Physico-Chemical Properties of the Chloroplast Flavoprotein, Ferre-	
	doxin-NADP ⁺ Reductase	222
	Kinetic Properties of Ferredoxin-NADP ⁺ Reductase	
D.	Multiple Forms of the Chloroplast Flavoprotein	226
Re	ferences	226

12. Cytochromes W.A. CRAMER (With 2 Figures)

Α.	Introduction									227
В.	Isolated Higher Plant Cytochromes									227
C.	Isolated Algal Cytochromes									230
D.	Cytochrome Function in Electron Transport									230
Re	ferences	·								236

13. Plastoquinone J. AMESZ (With 5 Figures)

A.	Introduction and Properties			238
В.	Experiments with Extracted Chloroplasts			240
C.	Reactions of Endogenous Plastoquinone as Secondary Electron Acceptor			240

D. Identity	of the Pri	mary Elec	ron Acc	eptor	of P	hotos	ystem	Π.					242
E. Specific	Inhibitors	s of Plasto	uinone	• •									244
References													245

14. Plastocyanin S.KATOH (With 1 Figure)

~~••																			
Α.	Distribution and Localization																		247
B.	Extraction and Purification .																		247
С.	Molecular Properties																		248
D.	Function in Photosynthetic Ele	cti	ror	ı T	[]ra	ins	spe	ort	S	yst	en	1							250
	ferences																		

15. Artificial Acceptors and Donors G. HAUSKA (With 1 Figure)

	duction
	ral Aspects
C.	ron Acceptors
	ron Donors
E.	pounds Accepting and Donating Electrons-Cyclic Electron Transport and By-
	s
F. '	Topography of the Chloroplast Membrane and Artificial Energy Conservation . 261
	pes

16. Inhibitors of Electron Transport S. IZAWA (With 1 Figure)

5.	IZAWA (WIIII	L	Γış	gui	е)			
A.	Introduction							

A.	Introduction		266
B.	Description of Inhibitors		267
	I. Inhibitors that Act on Water-Oxidizing Side of Photosystem II		267
	II. Inhibitors that Block Exit of Electrons from Photosystem II		270
	III. Plastoquinone Antagonists		274
	IV. Inhibitors of Electron Transfer Between Plastoquinone and cytochrome f		275
	V. Inhibitors of Plastocyanin		276
	VI. Inhibitors of Reactions in Ferredoxin-NADP ⁺ Region		278
Re	ferences		

17. Antibodies

R.J. BERZBORN and W. LOCKAU

	Introduction	
В.	General Considerations on the Application of Antibodies to Studies of Membrane	
	Function	
	I. Properties of Antibodies	
	II. Usefulness of Antibodies.	284
C.	Results and Conclusions from Experiments with Antisera Against Individual Chloro-	
	plast Antigens	287
D.	Summary and Outlook	294
Re	ferences	294

18. Chemical Modification of Chloroplast Membranes R. GIAQUINTA and R.A. DILLEY

A.	Introduction														297
B.	N-ethylmaleimide (NEM)								•						297

C.	Carbodiimides					 					298
	Lactoperoxidase-Catalyzed Iodination .										
Ē.	Trypsin					 					300
F.	Diazoniumbenzenesulfonic Acid (DABS)					 					301
	ferences										

III. Energy Conservation

1. Photophosphorylation

A.T. JAGENDORF (With 7 Figures)

Α.	Relation of Electron Transport to Phosphorylation			307
	I. Electron Transport Patterns			307
	II. Coupling Between Electron Transport and Phosphorylation			308
	III. Energy Conservation Sites			310
B.	Chemiosmotic Principles of Coupled Electron Flow and ATP Synthesis .			311
	I. The Chemiosmotic Hypothesis; and Others			311
C.	Evidence Relating to Operation of Chemiosmotic Principles in Chloroplast			317
	I. Light-Driven Proton Uptake			317
	II. The Membrane Potential			319
	III. ATP-Driven Proton Uptake			321
	IV. Post-Illumination ATP Synthesis (" X_E ")			322
	V. Acid to Base Transition			322
	VI. Stoichiometrics and Thermodynamics			323
D.	Role of the Coupling Factor in Phosphorylation			326
	I. CF_1 Enzymatic Activities			326
	II. Nature, Visualization, Location of the Protein			327
	III. Uncoupling, Recoupling, and Function in Proton Translocation			328
	IV. Function in Phosphorylation: Conformational Changes and Ligand B			329
Re	eferences			334

2. Proton and Ion Transport Across the Thylakoid Membranes H. ROTTENBERG (With 3 Figures)

A. Introduction \ldots				338
B. The Mechanism of Light-Induced Proton Transport				338
C. Secondary Ion Transport				340
D. Electrochemical Potential of Protons Across the Thylakoid Membranes				
E. Ion Transport and the Mechanism of Uncoupling in Chloroplasts				345
F. ATP-Induced Proton Transport				346
G. Proton Transport in Subchloroplast Particles and Chromatophores				347
References				348

3. Bound Nucleotides and Conformational Changes in Photophosphorylation N. SHAVIT (With 1 Figure)

А.	Introduction						350
В.	Tightly Bound Nucleotides on Isolated and Membrane-Bound CF	1					351
С.	Nucleotide and Nucleotide Analogs: Binding and Activity						352
D.	Antisera to CF_1						354
E.	Conformational Coupling in Thylakoid Membranes						354
Re	ferences						356

4. The High Energy State **B.A. MELANDRI**

A. Coupling Mechanism Hypotheses					358
B. Experimental Evidence for the Existence of a High Energy State					361
C. The Energy Level and the Energy Capacity of the High Energy State					363
References				•	366

5. ATPase

T. BAKKER-GRUNWALD (With 2 Figures)

A. Introduction			 	369
B. History of ATPase			 	369
C. Feedback in ATPase				370
D. Conformational Changes Relevant for ATPase			 	371
E. Component Requirements of Membrane-Bound ATPase in General				
F. Relations of ATPase with Other Topics in Bioenergetics				372
References				373

6. Post-Illumination ATP Formation

J.M. GALMICHE

	Introduction
	Materials and Methods
С.	General Conditions for Post-Illumination ATP Formation
	I. Two-Stage ATP Synthesis
	II. Delayed ATP Synthesis in Flashing Light
D.	High Energy State Intermediate
	I. Chemical High Energy State Intermediate
	II. High Energy State and Membrane Property Changes
E. 1	Hypotheses on the Nature of the High Energy State Intermediate X
F.	Conclusions
	ferences

7. Chloroplast Coupling Factor N. NELSON (With 2 Figures)

A. Introduction												393
B. Reconstitution of CF ₁ Depleted Chloroplasts												393
C. Preparation of CF_1												394
D. Physical Properties of CF_1												
E. Catalytic Properties of Activated CF ₁												396
F. Subunit Structure of CF_1												397
G. Chemical Modification of CF ₁ and the Nature												
H. Nucleotide Binding and the Mechanism of AT	ΡF	-01	rm	ati	on	L						401
References												403

8. Field Changes B. RUMBERG (With 3 Figures)

Α.	Introduction					405
В.	Quantitative Results on Changes of Membrane Potential					407
	Concept of Ion Transport Phenomena					
D.	Relationship Between Membrane Potential and ATP Formation					413
E.	Summary					414
Re	eferences					415

9. Acid Base ATP Synthesis in Chloroplasts S. SCHULDINER (With 2 Figures)

A.	Introduction																				416
B.	General Properties of the System																		٠		416
С.	Dicarboxylic Acid Requirement																				417
D.	The Electrochemical Gradient of	Pr	ot	on	s a	inc	1 A	١	Ρ	Sy	nt	he	sis								419
E.	Kinetics																				420
F.	Activation of ATP Hydrolysis .																				420
Re	ferences				•	•									·	•		•	•	•	422

10. Energy-Dependent Conformational Changes R. KRAAYENHOF (With 1 Figure)

A. Introduction						423
B. Conformational Mechanism of Energy Transduction						423
C. Energy-Dependent Structural Changes in the Thylakoid Me	embrane .					424
D. Energy-Dependent Conformational Changes in Chloroplast						
References				•		428

11. Uncoupling of Electron Transport from Phosphorylation in Chloroplasts N.E. GOOD (With 1 Figure)

А.	The Concept of Uncoupling										429
B.	Criteria of Uncoupling										430
	Types of Uncoupling by Typical Uncouplers										
	I. Malfunctions of the Coupling Factor .										
	II. Malfunctions of the Membrane										
	III. Uncoupling by Unknown Mechanisms										434
	A General Consideration of Mechanisms of										
	ferences										

12. Energy Transfer Inhibitors of Photophosphorylation in Chloroplasts R.E. MCCARTY (With 2 Figures)

A. I	Definition of Energy Transfer Inhibitors	. 4	437
B . E	Energy Transfer Inhibitors Which Probably Exert Their Effects on Coupling Factor 1	1 4	438
C. I	Energy Transfer Inhibitors Whose Site of Action is Unknown	. 4	442
D. 5	Some Observations and Conclusions	. 4	445
Refe	erences	• •	446

13. Photophosphorylation in vivo H. GIMMLER

A.	Introduction											448
B.	Methods											452
C.	Cyclic Photophosphorylation in vivo											456
D.	Pseudocyclic Photophosphorylation in vivo											460
E.	Noncyclic Photophosphorylation in vivo											463
F.	Regulation of Photophosphorylation in vivo											465
G.	Photophosphorylation in vivo and CO ₂ Fixat	tio	n									466
H.	Concluding Remarks											467
Re	ferences											468

14. Delayed Luminescence S. MALKIN (With 7 Figures)

Α.	General	473
B.	Methods	474
С.	Phenomenology	476
	I. Emission and Excitation Spectrum	476
	II. Decay of Delayed Luminescence	
	III. Activation of Delayed Luminescence	
	IV. Delayed Luminescence and the S-States	
D.	Origin of Delayed Luminescence in Photosynthetic Systems	484
	I. Delayed Luminescence from Plants	
	II. Models for the Mechanism of Delayed Luminescence in Photosynthetic Systems	487
Re	ferences	

15. Exchange Reactions C. CARMELI

Α.	Introduction	492
Β.	The Development of the Study of Exchange Reactions in Photophosphorylation	492
C.	Mechanisms of Exchange Reactions	494
	Requirement for Substrates	
E.	The Relations Between Exchange Reactions and the Mechanism of Photophosphoryla-	
	tion	496
F.	Energy Requirements	498
G.	Reconstitution of Vesicles Catalyzing P _i -ATP Exchange	498
Re	ferences	499

IV. Structure and Function

1. Introduction to Structure and Function of the Photosynthesis Apparatus K. MÜHLETHALER (With 9 Figures)

Α.	The Membrane Components	03
B.	Ultrastructure of Thylakoid Membranes	05
	I. General Aspects	05
	II. The Outer (Matrix Side) Surface (OS)	08
	III. The Inner (Lumen Side) Surface (IS)	
	IV. The Inner Zone of the Thylakoid Membrane	10
С.	The Relations Between Peripheral and Integral Particles	12
	Mobility of Membrane Particles	
E.	The Identification of Membrane Constituents	13
F.	Correlation Between Ultrastructural and Serological Studies	16
G.	The Relationship Between Structure and Function	18
Η.	Conclusions	18
	Freeze-Fracture Nomenclature Used for Studies of the Thylakoid Membrane 5	
Re	ferences	19

2. The Topography of the Thylakoid Membrane of the Chloroplast P.V. SANE (With 4 Figures)

Α.	. Introduction		522
Β.	. The Distribution of Photosystems in the Chloroplast Lamellar Structure		522
	I. The Model		522
	II. The Supporting Evidence		524
	III. The Contradictions		

C.	Reactivity in the Partition and Nonpartition Regions	:6
	I. The Localization of NADP ⁺ Reductase	
	II. The Localization of ATPase	
	III. The Consequences of the Model	0
	IV. The Role of Grana	92
D.	The Asymmetry of the Membrane	53
	I. The Morphological Evidence for the Asymmetry of the Membrane	
	II. The Topography Across the Membrane	
	III. The Topography Along the Membrane	8
E.	Concluding Remarks	
	eferences	

3. Subchloroplast Preparations

G. JACOBI (With 3 Figures)

A.	Introduction	543
	The Fractionation Pattern	
C.	The Distribution of Photosystems in the Grana and in the Intergrana Region of	
	Chloroplasts from Higher Plants	547
D.	The Fractionation of Grana Stacks	550
E.	The Alteration of Reaction Properties and the Diversity of Chloroplast Fragments	552
F.	The Disorientation of Electron Carriers and the Effect of Plastocyanin	555
G.	Prospect	558
	ferences	

4. Fragmentation

J.S.C. WESSELS (With 2 Figures)

Α.	Introduction																563
В.	Differentiation of the Photosystems																564
С.	Fragmentation of Chloroplasts																565
D.	Digitonin Subchloroplast Particles																566
E.	Triton Subchloroplast Particles																569
F.	Protein Composition of Subchlorop	las	st i	Pai	rtic	cle	S										571
Re	ferences							•					•	-	•	•	572

5. The Organization of Chlorophyll in vivo J.P. THORNBER and R.S. ALBERTE (With 2 Figures)

A. In	troduction									574
	istence of Multiple Chlorophyll-Proteins in Higher Plant									
C. P-'	700-Chlorophyll a-Protein									575
D. Th	he Light Harvesting Chlorophyll a/b-Protein									577
E. Ot	her Chlorophyll-Proteins in the Plant Kingdom				-					579
F. Co	ontent of Chlorophyll-Proteins in Higher Plants	•		• •						580
	immary and Concluding Remarks									
Refer	ences	÷	•	• •			•		•	582

6. Development of Chloroplast Structure and Function N.K. BOARDMAN (With 14 Figures)

Α.	Ultrastructural Changes During Greening	583
В.	Spectroscopic Changes During Greening	586
С.	Chlorophyll Formation in Relation to Ultrastructural and Spectroscopic Changes	588
D.	Composition of Developing Thylakoids	590

E.	Development of Photochemical Activity						591
F.	Cytochrome and P-700 Redox Changes in Developing Plastids						595
	Correlation of Ultrastructural Changes with Function						
Re	ferences						597

V. Algal and Bacterial Photosynthesis

1. Eukaryotic Algae W. Urbach

A.	Introduction									603
	Objects									
	Pigments and Pigment Systems									
D.	Electron Transport and Photophosphorylation									608
	I. General Aspects									
	II. Photosystems									611
	III. Noncyclic Electron Transport									611
	IV. Cyclic Electron Transport									614
	V. Pseudocyclic Electron Transport									615
	VI. Regulation of Electron Transport Systems									616
	/II. Special Electron Acceptors									
V	III. Photophosphorylation									617
Ref	erences									617

2. Blue-Green Algae D.W. KROGMANN (With 1 Figure)

А.	Introduction
B.	Membrane Structure
	Major Accessory Pigments
D.	Photosystem II Reaction Centers
E.	Photosystem I
F.	Electron Transport from Photosystem I to NADP ⁺
G.	Reactants Linking the Photosystems
H.	Water Splitting, Integrated Function and Phosphorylation
Re	ferences

3. Electron Transport and Photophosphorylation in Photosynthetic Bacteria Z. GROMET-ELHANAN (With 1 Figures)

А.	Introduction	537
B.	Photosynthetic Electron Transport	538
	I. General	538
	II. Reaction Centers and Primary Events	539
	III. Components of the Electron Transport Chain	
	IV. Sites of Coupled Phosphorylation	544
	V. Photoreduction of NAD^+	548
C.	Energy Conservation	
	I. General	550
	II. Proton Uptake, pH Gradient and Membrane Potential	550
	III. Quantitative Estimation of the Light-Induced Electrochemical Proton Gradient	
	in Relation to the Phosphate Potential	552
	IV. The High Energy State and its Utilization (Postillumination and Acid-Base Phos-	
	phorylation)	553

XVIII

V. ATPase, P	yropho	sp	ha	tas	e	an	d	Ex	ch	an	ge	R	ea	cti	on	15							
VI. Coupling F	actors																						
D. Concluding Re-	marks																	÷					
References																							
Author Index .	、 · · ·					•																	
Subject Index .												,										,	