Contents

Chapter 1	PHOTOSYNTHESIS	1				
•	The capture of light energy by living organisms					
1.	• • • • • •	2				
1.	Photosynthesis in a comparative context					
•.	e i notosynthesis in a comparative context	5				
Chapter 2	2 THE ORGANISATION OF PHOTOSYNTHETIC STRUCTURES					
2.	Biological membranes	13				
	2.1.1 Membrane lipids	16				
	2.1.2 Membrane proteins	18				
2.	2 The membranes of chloroplasts and photosynthetic bacteria	19				
2.	3 Pigments	24				
	2.3.1 Spectroscopy	24				
	2.3.2 Chlorophylls, phycobilins and carotenoids	25				
2.		28				
2.	5 Antenna complexes	30				
	2.5.1 Chlorosomes	31				
	2.5.2 Phycobilisomes	31				
	2.5.3 The antenna of the purple bacteria	34				
	2.5.4 Complexes in the green plant chloroplast	35				
2.	6 Reaction-centre complexes	39				
	2.6.1 Green plants possess two types of photosystem	39				
	2.6.2 Purple bacteria possess the simplest reaction centre	40				
	2.6.3 Green plants: PSII resembles purple bacteria	42				
	2.6.4 Green plants: PSI—more chlorophyll attached to fewer proteins	42				
	2.6.5 Green sulphur bacteria	44				
	2.6.6 Heliobacterrium chlorum	44				
2.		44				
	Summary					
Chapter 3	PRIMARY PHOTOPHYSICS Times from 1 fs to 100 ps	45				
3.	Light absorption: formation of excited states of molecules	45				
3.		49				
5	3.2.1 Fluorescence	49				
	3.2.2 Excitation energy transfer	51				
	3.2.3 Radiationless deactivation	51				
3.1		52				
J	3.3.1 PSI	53				
	3.3.2 PSII	54				
		24				

CONTENTS

		3.3.3 Excitation migration	54		
		3.3.4 Variables affecting the fluorescence yield	55		
	3.4	Photochemical charge separation in reaction centres	55		
		THE COMPANY OF ANOTHING			
Chapter	- 4	ELECTRON TRANSFER WITHIN			
		REACTION-CENTRE COMPLEXES	61		
		Times from 4 ps to 0.15 ms	61		
	4.1	Redox potentials	65		
		4.1.1 Cytochromes 4.1.2 Chlorophyll	66		
	47	Quinones—the electron acceptors for the reaction centre of PSII in	00		
	4.2	green plants and purple bacteria	67		
		4.2.1 Fluorescence induction	69		
	4.3	Ferredoxins—the electron acceptors in the reaction centres of green			
	4.5	plant PSI and green sulphur bacteria	71		
		4.3.1 Electron transport within PSI	71		
		4.3.2 Ferredoxin is the diffusible electron acceptor	73		
		4.3.3 The RC of green sulphur bacteria resembles PSI of green plants	75		
	4.4		75		
		4.4.1 Four families of C-cytochromes	75		
		4.4.2 Purple bacteria	76		
		4.4.3 Water is the ultimate electron donor to PSII in green plants	76		
		4.4.4 Plastocyanin is the electron donor to PSI in green plants	80		
	4.5	Summary	82		
~	-				
Chapte	r 5	ELECTRON TRANSPORT BY DIFFUSIBLE	0.2		
		MOLECULES	83		
	. .	Times from 1 ms to 20 ms			
	5.1	The ubiquitous cytochrome bc complex: the quinol cytochrome c			
		reductase	83		
	5.2		88		
		5.2.1 Purple bacteria	88		
		5.2.2 Chloroplasts	90		
	<i>E</i> 7	5.2.3 Green sulphur bacteria	91		
	5.3	Summary	92		
Chapter 6		THE PRODUCTION OF ATP	95		
Chapt		Times from 1 s to 100 s	,,		
	6.1		95		
	6.2		99		
	6.3		101		
	6.4		102		
		6.4.1 How much energy is required for ATP synthesis?	102		
		6.4.2 The ATP synthase or F-ATPase	104		
	6.5		107		
	6.6	Reverse electron transport	110		
~	-	·			
Chapter 7		METABOLIC PROCESSES AND			
		PHYSIOLOGICAL ADJUSTMENTS	111		
	_	Seconds to hours			
	7.1	ere	111		
	7.2		115		
		7.2.1 The reductive citrate cycle	115		

	7.2.2	The reductive pentose cycle	115
	7.2.3	Photorespiration	123
	7.2.4	C4 photosynthesis	128
	7.2.5	Chloroplasts and respiration	133
7.3	Chlore	oplast-cytoplasm transport	133
	7.3.1	The products of photosynthesis: starch and sucrose	136
	7.3.2	Guard cells	139
	7.3.3	Carbon dioxide accumulation	139
7.4	Molec	ular cell biology	140
	7.4.1	Genes exist in the cell nucleus and in organelles	140
	7.4.2	The control of chloroplast synthesis	143
REFEREN	CES A	AND FURTHER READING	146
INDEX			153

CONTENTS

vii