Contents

Preface to first edition v Preface to second edition vii Abbreviations xiv

Environmental chemistry in a global perspective *i*

1 Environmental chemistry 3

- 1.1 The subject matter of this book 5
- 1.2 Environmental composition 8
- 1.3 Chemical processes 10
- 1.4 Anthropogenic effects 14 Additional reading 17

The Earth's atmosphere 19

2 The Earth's atmosphere 21

- 2.1 The Earth's atmosphere—the air we breathe 21
- 2.2 Solar influence on the chemical composition of the atmosphere 24
- 2.3 Reactions and calculations in atmospheric chemistry 27 Additional reading 39 Problems 39

3 Stratospheric chemistry—ozone 42

- 3.1 Concerns about stratospheric ozone 42
- 3.2 Oxygen-only chemistry-formation and turnover of ozone 48
- 3.3 Processes for catalytic decomposition of ozone 51
- 3.4 Chlorofluorocarbons (CFCs) 56
- 3.5 Other reactions involving stratospheric ozone 63
- 3.6 Antarctic and Arctic 'ozone hole' formation 64 Additional reading 67

Websites—Information on ozone monitoring 68 Problems 68

4 Tropospheric chemistry—smog 71

- 4.1 What is smog? 72
- 4.2 The chemistry of photochemical smog 74
- 4.3 Exhaust gases from the internal combustion engine 85 Additional reading 98 Problems 98

5 Tropospheric chemistry—precipitation 100

- 5.1 The composition of rain 101
- 5.2 Atmospheric production of nitric acid 104
- 5.3 Atmospheric production of sulfuric acid 106
- 5.4 Acidifying agents in precipitation 112
- 5.5 Rain, snow, and fog chemistry-similarities and differences 113
- 5.6 The global picture-sources and sinks 116
- 5.7 Control of anthropogenic nitrogen and sulfur emissions 120
 Additional reading 123
 Problems 124

6 Atmospheric aerosols 125

- 6.1 Sources of aerosols—a closer look 128
- 6.2 Aerosol concentrations and lifetimes 136
- 6.3 Air pollution control for particulate emissions 139
 Additional reading 141
 Problems 141

7 Chemistry of urban and indoor atmospheres 143

- 7.1 Pollutants in the urban atmosphere 144
- 7.2 Mexico City 148
- 7.3 Indoor air quality 151
- 7.4 Common indoor air contaminants 153 Additional reading 162 Problems 162

8 The chemistry of global climate 164

- 8.1 Composition of the Earth's atmosphere 164
- 8.2 Energy balance 166
- 8.3 The greenhouse gases and aerosols 171
- 8.4 Relative importance of the changes in greenhouse gas concentrations 179
- 8.5 Energy resources 182
- 8.6 Greenhouse gases associated with the use of carbon-based fuels 183
 Additional reading 193
 Problems 193

PART B The hydrosphere 195

9 The hydrosphere 197

- 9.1 Physical and chemical properties of water 201
- 9.2 Concentration units used for aqueous solutions 208 Additional reading 210 Problems 210

10 Distribution of species in aquatic systems 212

- 10.1 Single-variable diagrams 213
- 10.2 Two-variable diagrams—pE / pH diagrams 219
- 10.3 Measurements of p*E* 232 Additional reading 233 Problems 233

11 Gases in water 236

- 11.1 Simple gases 237
- 11.2 Gases that react with water 241
- 11.3 Alkalinity 246 Additional reading 252 Problems 252

12 Organic matter in water 254

- 12.1 Origins of organic matter in water 255
- 12.2 Environmental issues related to aqueous organic matter 257
- 12.3 Humic material 258 Additional reading 270 Problems 270

13 Metals and semi-metals in the hydrosphere 273

- 13.1 Aquo complexes of metals 275
- 13.2 Classification of metals 278
- 13.3 Three metals-their behaviour in the hydrosphere 287
- 13.4 Metal complexes of ligands of anthropogenic origin 293
- 13.5 Suspended matter in the hydrosphere—metal associations 296
 Additional reading 297
 Problems 298

14 Environmental chemistry of colloids and surfaces 299

- 14.1 Surface properties of colloidal materials 302
- 14.2 Quantitative descriptions of adsorption I 308
- 14.3 Phosphorus environmental chemistry 311

- 14.4 Quantitative descriptions of adsorption II 317
- 14.5 Partitioning of small organic solutes between water and soil or sediment 319
- 14.6 Colloidal material in the natural environment 327Additional reading 333Problems 333

15 Microbiological processes 335

- 15.1 Classification of microorganisms 336
- 15.2 Microbiological processes—the carbon cycle 341
- 15.3 Microbiological processes—the nitrogen cycle 355
- 15.4 Microbiological processes—the sulfur cycle 361 Additional Reading 364 Problems 364

16 Water pollution and waste-water treatment chemistry 366

- 16.1 Water quality guidelines 369
- 16.2 Waste water and its treatment 373
- 16.3 Advanced microbiological processes 382
- 16.4 The final products after treatment of waste water 384 Additional reading 385 Problems 385

The terrestrial environment 387

17 The terrestrial environment 389

17.1 Soil formation 391 Additional reading 400 Problems 400

18 Soil properties 402

- 18.1 Physical properties 402
- 18.2 Chemical properties 406
- 18.3 Soil profiles 412
- 18.4 Environmental issues associated with soils 418Additional reading 430Problems 430

19 The chemistry of solid wastes 433

- 19.1 Solid wastes from mining and metal production 435
- 19.2 Organic wastes 440

19.3 Mixed urban wastes 448 Additional reading 456 Problems 457

20 Organic biocides 459

- 20.1 What are biocides? 459
- 20.2 Chemical stability 462
- 20.3 Mobility of biocides 478
- 20.4 Leachability 483 Additional reading 485 Problems 486

21 The future Earth 488

Appendices 494

- A.1 Properties of the Earth 494
- A.2 Area, biomass, and productivity of ecosystem types 495
- A.3 Properties of air and water 495
- B.1 The elements 496
- B.2 Thermochemical properties of selected elements and compounds 499
- B.3 Mean bond enthalpies $\Delta H / kJ \text{ mol}^{-1}$ at 298 K 501
- B.4 Dissociation constants for acids and bases in aqueous solution at 25°C 502
- B.5 Standard redox potentials in aqueous solutions 504
- C.1 Fundamental constants 505
- C.2 SI prefixes and fundamental geometric relations 505

Index 507