Contributors to Volume 48	vii
Volumes in the Series	xi
Preface	xxv
Series Editor's Preface	xxix
Foreword	xxxi

Part I: Air

Chapter	1. Theory of solid phase microextraction and its application in	
	passive sampling	
Yon	g Chen and Janusz Pawliszyn	
1.1	Introduction	3
1.2	Calibration in solid phase microextraction.	6
	1.2.1 Equilibrium extraction	$\overline{7}$
	1.2.2 Exhaustive extraction	8
	1.2.3 Pre-equilibrium extraction	9
	1.2.4 Calibration based on first-order reaction rate constant	10
	1.2.5 Calibration based on diffusion	12
Refe	erences	31
Chapter	2. The use of different designs of passive samplers for air monitoring of persistent organic pollutants	
Ros	alinda Gioia, Kevin C. Jones and Tom Harner	
2.1	Introduction	33
2.2	The context: why develop passive air sampling techniques for	
	POPS?	35
2.3	What approaches can be used?	38
2.4	The choice of sampler designs: features, advantages and	
	potential problems	40
	2.4.1 Low-capacity sampling: polymer-coated glass	42
	2.4.2 Medium-capacity sampling devices: polyurethane	
	foam disks	43
	2.4.3 High-capacity sampling devices: semipermeable	
	membrane devices and XAD-2 resin	44

2.5	Case studies and applications of PAS for POPS	46
	2.5.1 POGs: case studies and applications	46
	2.5.2 SPMDs: case studies and applications.	47
	2.5.3 PUF disks: case studies and applications	49
	2.5.4 XAD-2 resin: case studies and applications	51
2.6	Future improvements and needs for PAS for POPS	52
Refe	rences	53
Chapter	3. Passive sampling in combination with thermal desorption	
	and gas chromatography as a tool for assessment of chemical	
	exposure	
Anna	a-Lena Sunesson	
3.1	The applicability of passive sampling for chemical exposure	
	assessment	57
3.2	Passive sampling, basic theory	58
3.3	Sampling rates	60
3.4	Standards for evaluation of passive samplers	60
3.5	Sampler designs for passive sampling-thermal desorption	
	analysis	61
3.6	Thermal desorption	64
3.7	Adsorbents	67
3.8	Analytical equipment for thermal desorption	69
3.9	Applications using passive sampling-thermal desorption-gas	
	chromatography for exposure assessment; examples and	
	trends	70
3.10	Possible limitations/sources of error when using passive	
	sampling-thermal desorption-gas chromatography	72
3.11	Self-assessment of exposure	74
3.12	Practical considerations	76
	3.12.1 Selecting a suitable adsorbent for the analytes of	
	interest	76
	3.12.2 Minimising artefacts.	77
	3.12.3 Blank samples	78
	3.12.4 Personal (individual) exposure assessment	78
3.13	Concluding remarks and future perspectives	79
	erences	79
	4. Use of permeation passive samplers in air monitoring	
Boże	ena Zabiegała and Jacek Namieśnik	
4.1	Introduction	85
4.2	Theory	86
	4.2.1 Membrane	88

4.3	Design of the permeation passive sampler	91
4.4	Calibration of gut permeation passive samplers	92
4.5	Determination of the calibration constants of gut permeation	
	passive samplers with silicone membranes based on physico-	
	chemical properties of the analytes	92
	4.5.1 Number of carbon atoms	95
	4.5.2 Molecular mass	96
	4.5.3 Boiling point temperature	96
	4.5.4 Linear temperature-programmed retention index	
	system	98
	4.5.5 Application of GUT permeation passive sample in	
	indoor air analysis	103
4.6	Conclusion	104
Refe	erences	105
Chapter	5. Membrane-enclosed sorptive coating as integrative sampler	
	for monitoring organic compounds in air	
Pete	er Popp, Heidrun Paschke, Branislav Vrana, Luise Wennrich	
	Albrecht Paschke	
5.1		107
5.2		108
5.3	5	110
0.0	-	110
		111
	5.3.3 Generation of the standard gas mixtures and	
		111
		114
	-	116
5.4		116
0.1		116
	5.4.2 Comparison of the different MESCO types	118
		119
5.5		122
		122 122
nere		144
Chapter	6. Towards quantitative monitoring of semivolatile organic compounds using passive air samplers	
	compounds using passive air sampiers	
	hael E. Bartkow, Carl E. Orazio, Todd Gouin, James N. Huckins Jochen F. Müller	
6.1	Introduction	125
6.2	Estimating air concentrations	126
0.2		2

6.3 Environmental factors	131
6.4 Conclusions	133
Acknowledgments	134
References	134

Part II: Water

Chapter 7. Theory, modelling and calibration of passive samplers used
in water monitoring
Kees Booij, Branislav Vrana and James N. Huckins
7.1 Introduction
7.2 Basic concepts and models for SPMDs 1
7.3 Model application to other passive samplers 1
7.4 Validity of the model assumptions
7.5 Water boundary layer resistance 1
7.6 Membrane resistance 1
7.7 Biofouling layer 1
7.8 Other intermediate phases 1
7.9 Calibration 1
7.9.1 Static exposure design 1
7.9.2 Static renewal design 1
7.9.3 Continuous flow design 1
7.9.4 In situ calibration 1
7.10 Conclusion and outlook 1
References 1
Chapter 8. Tool for monitoring hydrophilic contaminants in water:
polar organic chemical integrative sampler (POCIS)
David A. Alvarez, James N. Huckins, Jimmie D. Petty, Tammy
Jones-Lepp, Frank Stuer-Lauridsen, Dominic T. Getting, Jon P.
Goddard and Anthony Gravell
8.1 Introduction
8.2 Fundamentals of POCIS
8.2.1 POCIS description and rationale
8.2.2 Applicability of POCIS
8.3 Theory and modeling
8.4 Study considerations
8.4.1 Use and processing.
8.4.2 Data quality consideration
8.5 Case studies
8.5.1 Application of POCIS for pharmaceutical monitoring in
the United States.

	8.5.2	Comparison of POCIS and traditional sampling for	
		wastewater monitoring	186
	8.5.3	Application of POCIS for pesticide monitoring in	
		Denmark	187
	8.5.4	Application of POCIS for pharmaceutical monitoring in	
		the United Kingdom	189
8.6	Futur	e research consideration	192
	8.6.1	Development of the PRC approach in POCIS	192
	8.6.2	Determination of sampling rate and kinetic data for	
		chemicals of interest	194
8.7	Conclu	1sions	195
Refe	rences		196

Chapter	9. Mo	nitoring of priority pollutants in water using	
	Che	emcatcher passive sampling devices	
Rich	nard G	reenwood, Graham A. Mills, Branislav Vrana, Ian Allan,	
Roci	ío Agui	ilar-Martínez and Gregory Morrison	
9.1	Intro	duction	199
9.2	Conce	ept of Chemcatcher	199
	9.2.1	Receiving phases	200
	9.2.2	Diffusion membranes	201
	9.2.3	Sampler body	203
9.3	Theor	ry	206
9.4	Calib	ration	207
9.5	Samp	ling of hydrophobic organic contaminants.	207
	9.5.1	Calibration data	208
	9.5.2	Performance reference compound concept	210
	9.5.3	Non-polar Chemcatcher/water distribution	
		coefficients	211
	9.5.4	Empirical uptake rate model	211
	9.5.5	Estimation of in situ TWA concentrations	212
9.6	Samp	ling of hydrophilic organic contaminants	213
	9.6.1	Integrative sampler	213
	9.6.2	Short pollution event detector	215
9.7	Samp	ling of metals	216
9.8	Samp	ling of organometallic compounds	217
9.9	Field	applications	217
	9.9.1	Pan-European field trials to compare the performances	
		of the Chemcatcher and spot sampling in monitoring the	
		quality of river water	217
	9.9.2	Monitoring pesticide runoff in Brittany, France	219

			Field trial in the River Meuse in The Netherlands	220
	ę		Field trial in the estuary of the River Ribble in the	
			Jnited Kingdom	222
9.1			ison of the performance of the Chemcatcher	
	1	with tha	at of other sampling devices	223
9.1	11	Future	trends	226
Ac	kno	owledgr	nents	226
Re	efer	ences .		227
Chapte	er 1		nbrane-enclosed sorptive coating for the monitoring of unic compounds in water	
Aľ	bre		chke, Branislav Vrana, Peter Popp, Luise Wennrich,	
			chke and Gerrit Schüürmann	
10			uction	231
10			e uptake model for MESCO sampler	232
10			of the different MESCO formats	233
10	.0	10.3.1	PDMS-coated fibre enclosed in an LDPE	-00
		10.0.1	membrane	233
		10.3.2	PDMS-coated stir bar enclosed in a dialysis	200
		10.0.2	membrane bag (MESCO I)	233
		10.3.3	Silicone material enclosed in an LDPE membrane	200
		10.0.0	(MESCO II)	234
10	4	Labora	atory-derived sampling rates of the various MESCO	201
10	• •			235
10	5		application of MESCO samplers	237
10	.0	10.5.1		201
		10.0.1	persistent organic pollutants in surface water	237
		10.5.2	Field trials with MESCO II—first results	246
٨	Izn		nents	240
		-		240
n	erer	ences .		240
Chapt	er 1		itu monitoring and dynamic speciation measurements	
17			olution using DGT	
			rnken, Hao Zhang and William Davison	
	1		luction	251
11	2		dology	253
		11.2.1	1 1	253
		11.2.2	8	254
		11.2.3		254
11	.3		theory	256
		11.3.1	r r	256
		11.3.2	Potential sources of error when using DGT	257

11.4	Novel applications	263
	11.4.1 Analytes 2	263
	11.4.2 Kinetics 2	265
	11.4.3 Speciation 2	266
	11.4.4 Bioavailability	271
	11.4.5 The use of DGT as a routine monitoring tool 2	273
	11.4.6 Metal remobilization from settling particles 2	274
11.5	Conclusion	274
Refer	ences	275

Chapter 12. Use of ceramic dosimeters in water monitoring

10.1	thwohl		
12.1	Introduction		
12.2	Ceramic dosimeter design		
	12.2.1 Ceramic membrane		
	12.2.2 Sorbent material		
	12.2.3 Determination of time-weighted average c	hemical	
	concentrations		
	12.2.4 Effect of temperature		
12.3	Practical considerations.		
	12.3.1 Preparation of the ceramic dosimeter for f	field	
	application		
	12.3.2 Sampling rates		
	12.3.3 Detection limits		
	12.3.4 Long-term stability		
12.4	Example of field results and future work		
Ackn	nowledgment		
Refer	rences		

Chapter 13. Passive diffusion samplers to monitor volatile organic compounds in ground-water

Don A. Vroblesky
13.1 Introduction
13.2 Applications
13.2.1 VOCs in ground-water at the ground-water/surface-
water interface
13.2.2 VOCs in ground-water in monitoring wells
13.3 Conclusions.
Acknowledgment
References

Chapter 1	14. Field study considerations in the use of passive sampling devices in water monitoring	
Por-A	Anders Bergqvist and Audrone Zaliauskiene	
14.1		811
14.1		312
14.0		315
14.2		315 315
		322
	14.2.3 Precautions/procedures during deployment and	
		323
14.3	4	325
Refer	rences	327
B. Sc	sampling devices cott Stephens and Jochen F. Müller	
15.1	Introduction	329
15.2	Key parameters	330
	15.2.1 Equilibrium partitioning	330
		330
15.3		331
	15.3.1 The concentration problem	331
	15.3.2 Batch techniques 3	331
	15.3.3 Flow through techniques	335
15.4	In situ methods	338
		339
	15.4.2 Grab sampling validation methods	341
Refe	rences	346

Part III: Soils and Sediments

Chapter 16. Theory and applications of D	GT measurements in soils and
sediments	
William Davison, Hao Zhang and Ke	nt W. Warnken
16.1 Introduction	
16.2 Principles in soils and sedimer	
16.3 Modelling interactions of DGT	
16.4 Soils	
16.4.1 Practicalities for deplo	

	16.4.2	Soil dynamics	361
		Biological mimicry	363
16.5	Sedime	ents	367
	16.5.1	Practicalities for deployments in sediments	368
	16.5.2	Analyte distributions from gel slicing	369
	16.5.3	Direct measurements of analytes in the binding layer	371
	16.5.4	Sources of localised maxima	373
	16.5.5	Advances in understanding of soils and sediments	
		using DGT	374
Refe	rences .		374

Chapter 17. Passive sampling devices for measuring organic compounds in soils and sediments

Part IV: Ecotoxicology and Biomonitoring

Chapter 1	18. Use of passive sampling devices in toxicity assessment of groundwater		
Krist	in Schirmer, Stephanie Bopp and Jacqueline Gehrhardt		
18.1	Introduction	393	
18.2	Concepts and examples for linking passive sampling of		
	groundwater with toxicological analysis	394	
	18.2.1 The toximeter	396	
	18.2.2 Toxicological analysis of solvent extracts obtained		
	from passive sampling devices	401	
18.3	Potential future approaches		
Ackn	owledgments	404	
Refer	rences	404	

agoT	Smede	vyed mussels s		
19.1	Introduction			
19.2	Monito	ring		
	19.2.1	General		
	19.2.2	History of musselwatch programme		
	19.2.3	Passive samplers		
	19.2.4	Objectives		
19.3	Method	ls		
	19.3.1	Materials		
	19.3.2	Mussels		
	19.3.3	Passive sampling		
	19.3.4	QA data		
	19.3.5	Partition coefficients		
19.4	Data h	andling and calculation		
	19.4.1	Mussels		
	19.4.2	Calculation of sampling rate		
	19.4.3	Analytical precision of sampling rate		
	19.4.4	Artefacts in sampling rates		
	19.4.5	Results for $R_{\rm S}$		
	19.4.6	Passive sampling and aqueous concentrations		
19.5	Results	s and discussion		
	19.5.1	Concentrations in water and mussels		
	19.5.2	Equilibrium or uptake phase		
	19.5.3	BAF values		
19.6	Useful	ness of PS in monitoring		
Gloss	ary			

Subject Index	49
---------------	----