
Semantic Web and Ontologies

Marcin Synak, Maciej Dabrowski, and Sebastian Ryszard Kruk

This chapter presents ontologies and their role in the creation of the Semantic
Web. Ontologies hold special interest, because they are very closely related
to the way we understand the world. They provide common understanding,
the very first step to successful communication. In following sections, we will
present ontologies, how they are created and used. We will describe available
tools for specifying and working with ontologies.

1 What is an Ontology?

The shortest possible answer is: An ontology is a specification of a conceptu-
alization.1

Basically, it means that an ontology formally describes concepts and rela-
tionships which can exist between them in some community. In other words –
an ontology describes a part of the world.

A concept in an ontology can represent a variety of things. A concept
can be an object of any sort: person, car, building, can describe an activity
or state: swimming, being busy or available, abroad. Can represent abstract
concepts like time or value. There is no strict restriction what can express as
a concept in our ontology. The only restriction is the real world which our
ontology tries to reflect.

A relationship in an ontology represents a way in which two concepts,
two things, can be connected to each other. The connection may represent
some allegiance: Dog is best friend of Man, Train needs Rails, characteristics
of objects: Children are Young, Apples are Juicy, activity: Policemen chase
Criminals, etc.

The whole idea of ontology may sound similar to the concept of RDF [151].
In fact, every ontology is an RDF graph, but the difference is that the ontol-
ogy sets rules, establishes facts concerning not single objects but classes of

1 The Semantic Web Community Portal: http://semanticweb.org

42 M. Synak et al.

objects. For example: Policemen chase Criminals could be a part of ontology –
because chasing criminals is policemen’s job in general. It is an established
fact. Inspector Smith chases Johnny-Sticky Fingers could be an RDF state-
ment compatible with this ontology. We can recognize that Inspector Smith
represents class Policemen (is an individual of this class) and Johnny-Sticky
Fingers looks like a Thief, who is obviously a Criminal. To be more specific,
we could say that Thieves are a subclass of Criminals.

Ontologies have different domains and scopes. Some try to describe more
general concepts, some are very specific. Hundreds of ontologies are already
listed in on-line ontology libraries [53,188].

2 Ontology Terms

There are some terms established in the field of ontologies. So far, some of
these terms were used without their formal definition. Most of them are pretty
straightforward and a reader can subconsciously devise what we mean when
we say, for example, that “something belongs to class X”. Nevertheless, it is
a good idea to clearly state the meaning of words we use:

• A Class, sometimes called a Concept in the ontology is a way to repre-
sent general qualities and properties of a group of objects. If a group of
objects have the same traits, that fact should be recognized and a class
representing these traits should be created. A good idea is to first recog-
nize the groups of objects and then create classes for them. For example,
if height is somehow important for what we do, we could describe that all
people whose height is more than 1.80m are grouped in a class called “Tall
People”.

• A Subclass, represents a part of the object group with some traits which
are not common for the whole group. For example if we have a class of
“Staff Members” which contains all the people working in our company,
we could devise a subclass called “Management”, grouping those members
of our staff which work in a management department.

• An Individual , or an object, is a single item in our world, which belongs
to some class (or many classes). “Ronald Reagan” could be an individual
of “American Presidents” class, as well as “message 2341” could be an
individual of “E-mails”. Two different individuals represent two different
objects. We must keep in mind that our individuals may represent abstract
concepts (such as activities) as well as solid objects.

• A property is used to describe qualities common to all the individuals of
a class. Properties represents relationships in ontologies. When we attach
a property to a class it becomes this property’s Domain. Class of objects a
property points to, is its Range.

• A property restriction can be set to further shape properties. Some com-
mon property restrictions are cardinality and value restrictions. We may
also want to specify that some property is required, etc.

Semantic Web and Ontologies 43

3 Reasoning Over Ontologies

We have already described that an ontology provides a common way of rep-
resenting knowledge about some domain. An ontology is a way to share
a common understanding of information structure. Once we have common
understanding, we can try to reason over this information, extract parts which
are of our interest and work with them.

Reasoning is a wide term which transgresses the boundaries of the Seman-
tic Web. It is often used in AI terminology as well as psychological works.
In the Semantic Web, generally we use the term reasoning to describe the
process of retrieving information from RDF graph.

There are many types of reasoning in the Semantic Web and one reasoning
language will not fit all needs. Some types of reasoning are designed to deal
with inconsistencies within the graph, other are used when available informa-
tion is not complete (fuzzy reasoning). Some reasoning languages are similar
in purpose to SQL-type querying languages for retrieval of information from
databases.

One type of reasoning is based on using the knowledge about graph
structure in form of an ontology. It usually consists of two phases:

• Inferencing phase, when additional information (additional triples) is gen-
erated from the RDF graph using a set of inferencing rules. The common
example is handling transitive properties, where additional information is
explicitly written.

• Querying phase, where a part of graph is retrieved. Query languages for
RDF, like RDQL [196] or SPARQL [206] are still in development phase.
Querying allows not only to simply match triples to given template. RDF
graph can be traversed, so queries like find me addresses of all friends of
John Smith are possible.

Reasoning/querying languages vary in their capabilities. For example,
some languages allow datatype reasoning, other not.

3.1 Existing Reasoning Engines

A short description of several existing tools, implementing different languages,
which can be used for reasoning:

• Jena [103] is an open source framework written in Java useful for build-
ing Semantic Web applications. It provides tools for manipulating RDF
graphs, with help of OWL and RDFS technology. One of Jena’s tools is
a rule-based inference engine, which can be used for reasoning. Jena also
supports RDQL [196], the query language for RDF.

• Sesame [198] is an open source RDF database with support for RDF
Schema inferencing and querying. Sesame supports several RDF querying
languages like RDQL. The most powerful is SeRQL, the language devel-
oped especially for Sesame. Sesame inferencing tools use rule definitions

44 M. Synak et al.

stored in XML file. There is default inferencing (which takes advantage
of constructs like OWL definition of transitive properties, etc.). Users can
use their custom inferencer and specify their own rules.

• TRIPLE [148] is an RDF query, inference and transformation language.
Its syntax uses constructs from Horn logic1 and F-logic [147]. Existing
implementation of TRIPLE is based on extensible Prolog implementation,
XSB [231].

4 OWL – Web Ontology Language

In the early days of the Semantic Web research there were many formalisms
used to describe ontologies. It made interoperability, excepted from semantic
solutions, virtually impossible.

4.1 What is OWL?

OWL, the Web Ontology Language [180, 181], is a W3C recommendation
of a language for specifying ontologies. It has been designed to facilitate
greater machine interpretability than previous solutions. It provides more
extensive vocabulary than plain XML, RDF or RDF Schema2 and better
facilitates expressing semantics than these languages. OWL has its roots in
DAML+OIL3 web ontology language, which concepts, revised and updated,
were incorporated into OWL.

Currently, the OWL is the choice for creating ontologies unless there are
special reasons to use older languages like DAML+OIL (compatibility, etc.).

The practice with creating OWL ontologies showed that while OWL is very
expressive, in some cases it is not convenient to use it. Sometimes we do not use
all of OWLs sophisticated concepts. But applications always assume that we
could and try to reason over these concepts. Designers of OWL predicted the
problem and provided three OWL “species”, subsets of OWL with decreasing
expressiveness. They will be described later. However, there are initiatives to
provide even simpler languages than OWL Lite, the least expressive of the
three.

4.2 OWL Concepts and Language Constructs

To fully understand how OWL works and what can it be useful for, we
need to formulate few concepts of OWL. Described terms are frequently used
in literature dealing with OWL. Definitions are roughly taken from OWL
specifications.

2 RDF Schema: http://www.w3.org/TR/rdf-schema/
3 DAML+OIL: http://www.w3.org/TR/daml+oil-reference

Semantic Web and Ontologies 45

• Class. Classes in OWL represent groups of objects with shared character-
istics. We can define a class in six ways:
1. Using the class identifier (URI) – named classes
2. Using the enumeration of all individuals which are the instances of the

class
3. Using a property restriction – all individuals which match the restric-

tion form a class
4. As an intersection of two or more classes – individuals common to these

classes form a new class
5. As an union of two or more classes – the sum of all individuals

belonging to these classes form a new class
6. As a complement of a class – contains all individuals which do not

belong to this class
• Class extension. In OWL terminology, the class extension is simply a set

of all individuals which form the class.
• Class axioms. The “truths” about classes. The simplest (and the least

informative) class axiom is the class declaration which states the existence
of the class. Other OWL language constructs used to define class axioms
are:
rdfs:subClassOf – (inherited from RDFS) means that the extension of
the class is a subset of extension of the superclass
owl:equivalentClass – means the equivalent class has exactly the same
extension
owl:disjointWith – means that the two disjointed classes have no com-
mon members in their extensions

• Property. Properties are used to describe classes. OWL distinguishes two
types of properties:
– Object properties (owl:ObjectProperty), which link individuals to

individuals
– Datatype properties (owl:DatatypeProperty), which link individuals

to data values
• Property extension. Property extension is a concept similar to the class

extension. It is a set of all pairs of individuals (subject and object) which
can be connected with the property.

• Property axioms. Similarly to classes, OWL defines property axioms:
rdfs:subPropertyOf, rdfs:domain, rdfs:range (inherited from RDFS)
– a subproperty has the extension which is a subset of superproperty
extension. Domain states that subjects of the property must belong to the
extension of pointed class. Range states the same, but refers to objects.
owl:equivalentProperty and owl:inverseOf – two properties are equiv-
alent if they have the same extension. One property is inversion of another
if for every pair (X, Y) in its extension there is a pair (Y, X) in the extension
of inverted property.
owl:FunctionalProperty and owl:InverseFunctionalProperty – glo-
bal cardinality constraints, functional property can have exactly one object

46 M. Synak et al.

for a particular subject (e.g. every person has exactly one year of birth).
Inverse functional properties can have exactly one subject for a particular
object (e.g. there is only one X in “X is a father of John”).
owl:SymmetricProperty and owl:TransitiveProperty – describe logi-
cal characteristics of properties. A property is symmetric if for every (X, Y)
pair in the property extension there is a pair (Y, X). Transition means that
if there are pairs (X, Y) and (Y, Z) in the property extension, then the pair
(X, Z) also belongs to this property extension.

• Individuals. Individuals are defined using individual axioms. There are two
types of axioms (facts, truths):
Axioms referring to class membership and property values
Axioms referring to individual identity (owl:sameAs, owl:differentFrom
- OWL can define that two individuals, two URIs, are actually the same
thing or explicitly state that this is not the case).

• Data types. OWL uses RDF data types (which refer to XML Schema
datatypes) and some of its own constructs like enumerated datatype.

4.3 OWL ‘Species’: OWL Lite, OWL DL and OWL Full

There are three types or ‘species’, as authors call them, of OWL. That
includes:

• OWL Full (or simply OWL, the ‘Full’ word has been added to distinct it
from the other two OWL languages)

• OWL DL (which is an abbreviation of ‘Description Logic’)
• OWL Lite

All three OWLs use the same syntactic constructions to build ontologies,
the differences are in restrictions which are put on OWL DL and OWL Lite.
OWL Full takes advantage of all RDF/RDFS constructs. For RDF developers,
transition from RDF to OWL Full is natural, since most of RDF data will
translate directly into OWL Full ontologies. To be compatible with OWL
DL or Lite, RDF data has to be specifically constructed for these ontology
languages.

Basically, the main restriction which does not exist in OWL Full (and
exists in the other two) is distinction between a class and an individual. In
OWL Full classes can be individuals at the same time. This gives the flexibility
of RDFS and allows to represent complicated real-world constructs but in the
same time OWL Full ontologies are very difficult to reason over.

Next is OWL DL. Description Logic [64] is an existing segment of business
applications and OWL DL was created to support it by providing desirable
computational properties for reasoning systems.

The list of restrictions which are placed upon OWL constructs is:

• Class definitions must be constructed using owl:Class or owl:Restric-
tion. Other definitions can not be used independently (only together with

Semantic Web and Ontologies 47

these two). A class can never be an individual at the same time (it is
possible in RDFS or OWL Full).

• Datatype subproperties can only be constructed from datatype properties
and object subproperties from object properties.

• A datatype property can not be inverse/functional.
• Transitive properties can not have specified cardinality.
• In OWL DL we can use annotation properties (to annotate our ontology)

only with classes, properties, individuals and ontology headers. Annotation
properties can not be datatype or object properties at the same time (they
can be in OWL Full), can not have subproperties, can not have range and
domain, etc.

Every OWL DL ontology is a valid OWL Full ontology (but not the other
way around).

The last, OWL Lite, is, as its name suggests, the least sophisticated (and
the least expressive) dialect of OWL. Of course, similarly as in the OWL DL
case, every OWL Lite ontology is a valid OWL DL ontology and by transience
is a valid OWL Full ontology. OWL Lite was created with software developers
in mind, it is easy to implement and use. However, there is a push to create
even simpler language for tool developers who would want to support OWL
and want to start with something uncomplicated. It is sometimes called OWL
Lite- (OWL Lite minus [57]).

OWL Lite has all the restrictions on OWL language constructs and add a
few of its own:

• There are no enumerations as class descriptions in OWL Lite
• owl:allValuesFrom and owl:someValuesFrom used to define classes by

property restrictions must point to a class name
• owl:hasValue property restrictions can not be used in OWL Lite
• cardinality constraints on properties in OWL Lite can only be set with

“0” or “1” value (no multiple cardinality in OWL Lite)
• unions and complements of classes can not be used as class descriptions,

intersection use is restricted to named classes and property restrictions
• class equivalence in OWL Lite can be only applied to classes defined with

URI and point either to a named class or property restriction
• class disjointness can not be specified using OWL Lite
• domain and range of a property must point to a class name

Examples of OWL constructs which are or are not legal in OWL DL and/or
OWL Lite can be found in OWL language reference document [182].

4.4 OWL vs. RDFS – Advantages, Differences

OWL is a build-up on RDFS. It should be considered as a set of ontology
building tools which are not provided by plain RDFS. Language constructs of
OWL allow to specify such facts like class disjointness or equivalence, defining

48 M. Synak et al.

classes by setting property restrictions or enumerations. At the same time,
user has the “freedom” of RDFS like specifying classes as individuals of other
(meta)classes (assuming he uses OWL Full).

We could say that OWL constructs are more defined RDFS constructs,
with more “finesse”. For example owl:Class is defined as a subclass of
rdfs:Class.

RDFS lets us specify a RDF vocabulary. OWL allows us to ontologize this
vocabulary.

4.5 DAML+OIL

DAML+OIL [51] grows from earlier DAML [211], the DARPA Agent Markup
Language and OIL [178], the Ontology Inference Layer. DAML was developed
as an extension to XML and RDF. It allowed more sophisticated class defini-
tions than RDFS. OIL was another initiative for providing more complicated
classifications which used constructs from frame-based AI.

These two efforts were merged and DAML+OIL language for specifying
ontologies was a result.

DAML+OIL introduced such concepts like class equivalence, property
uniqueness (concept later broadened in OWL – functional properties), prop-
erty restrictions, etc. It also redefined the concept of rdfs:Class.

DAML+OIL is worth mentioning because it made a way for OWL. OWL
is simply a revised and corrected successor of DAML+OIL which incorporates
experiences gathered while working with DAML OIL ontologies.

4.6 Ontology Example

Figure 1 shows an example, simple ontology in OWL.
The example ontology describes a class MaturePerson which gathers all

people who we considered mature (e.g. age 18 and older). A person may be
either Male or Female which are defined as subclasses of MaturePerson. An
individual of Male class can not be an individual of Female class at the same
time, so class Male is disjoint with Female.

The example specifies several properties. Every person has properties
hasAge and hasFriend. A person can only have one age but many friends,
so hasAge is specified as functional property. But being someone’s friend also
means that this person is also our friend, so hasFriend has been defined as
a symmetric property. hasAge connects an individual to an integer, so it is
specified as datatype property. hasFriend connects two individuals, so it is an
object property.

There are also specified properties hasWife and hasHusband. A Male can
have a wife and a Female can have a husband. If we are interested only in
monogamous relationships, these two properties are inverse and functional –
I’m a husband of my wife and there is exactly one person which can be my
spouse (at a certain moment in time).

Some concepts were removed from the example to keep it relatively small.

Semantic Web and Ontologies 49

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="MaturePerson"/>

<owl:Class rdf:about="#Male">

<owl:disjointWith rdf:resource="#Female"/>

<rdfs:subClassOf rdf:resource="#MaturePerson"/>

</owl:Class>

<owl:Class rdf:about="#Female">

<owl:disjointWith rdf:resource="#Male"/>

<rdfs:subClassOf rdf:resource="#MaturePerson"/>

</owl:Class>

<owl:SymmetricProperty rdf:ID="hasFriend">

<rdfs:domain rdf:resource="#MaturePerson"/>

<rdfs:range rdf:resource="#MaturePerson"/>

<rdf:type rdf:resource="&owl;#ObjectProperty"/>

</owl:SymmetricProperty>

<owl:FunctionalProperty rdf:ID="hasAge">

<rdfs:domain rdf:resource="#MaturePerson"/>

<rdfs:range rdf:resource="&xsd;#positiveInteger"/>

<rdf:type rdf:resource="&owl;#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:InverseFunctionalProperty rdf:about="#hasWife">

<rdfs:range rdf:resource="#Female"/>

<rdfs:domain rdf:resource="#Male"/>

<rdf:type rdf:resource="&owl;#ObjectProperty"/>

<owl:inverseOf rdf:resource="#hasHusband"/>

</owl:InverseFunctionalProperty>

<owl:InverseFunctionalProperty rdf:ID="hasHusband">

<rdfs:range rdf:resource="#Male"/>

<rdfs:domain rdf:resource="#Female"/>

<rdf:type rdf:resource="&owl;#ObjectProperty"/>

<owl:inverseOf rdf:resource="#hasWife"/>

</owl:InverseFunctionalProperty>

</rdf:RDF>

Fig. 1. Example ontology in OWL

50 M. Synak et al.

5 Developing Ontologies

Developing an ontology is a job which requires cooperation of both IT
specialists and domain experts. The first group has experience in building
applications using the technologies of the Semantic Web. The second group
knows the field which will be covered with the ontology.

A goal for an ontology is to efficiently and accurately describe a ‘part
of the world’. This goal can not be achieved without extracting information
about this realm first. E.g. if we want to create an ontology to improve postal
delivery services, we need to ask people involved what are the parts of their
job. For example, we need to know:

• What is the difference between a letter and a parcel?
• How does the fee system work?
• What are responsibilities of a postman? etc.

Some of these things may be obvious but in most cases they are not. For
example, most people know what a ‘letter’ is. But how many know what it
means to ‘porto’ pay for a letter? Specialists on every field have their own
dictionary of terms and use them accordingly to their regulations. If such
dictionary does not exist, the case is even more challenging, because it must
be created first.

When it comes to making two or more groups of people work with different
knowledge, experience and a way of seeing things together, there is always a
question of tools which could support their interactions. Two IT specialists
will probably find their common language quickly, because they understand
code, standardized diagrams and so on. It is the same case with two postmen.
But how to improve interactions between these two groups? Of course we have
traditional ways of communication – letters, telephones or simple face-to-face
talk. But more than often we have to make people from different cultures or
from different time zones cooperate. A need for a set of tools which could
improve that contact is apparent.

The described problem is common when we develop specialized software for
specific needs. But it is especially clear when it comes to developing ontologies.
An ontology can become ‘the ontology’ only if a compromise between all
the parties interested is achieved. It is not only a problem of developing a
specialized piece of software, but of developing a standard.

5.1 Common Steps of an Ontology Development Process

We have decided that an ontology could bring new quality to our project.
We have IT specialists, specialists from our example post office, all necessary
software and tools. Now, where to start?

Here is some general knowledge about developing ontologies. We know
some rules which are always useful, techniques giving good results. However,
none of existing techniques of developing an ontology could be described as the

Semantic Web and Ontologies 51

best or the easiest. Selection may depend on the domain we create an ontology
for and any specific requirements. We may also want to ask developers, what
are they most comfortable with.

Nevertheless, we can try to systematize ontology development by dividing
the process into phases. Developers of Protegé [212] ontology editor, from
Stanford University propose in [160] steps as follows:

1. Determine the ontology domain and scope
First, as in everything we do, we have to ask ourselves what exactly we
want to do. It is no different when creating an ontology. We need to know
what we want our ontology to cover, what are we going to use it for,
etc. By determining the domain, we restrict our interest to certain field
of knowledge. By defining the scope we choose what part of this field is
important to us.
A good practice in determining the ontology domain and scope is creating
a set of so called competency questions. Competency questions are ques-
tions we want our ontology to be able to answer. The example competency
questions for postal delivery services could be:
• Is it possible to send a 50 kg parcel to Zimbabwe till next Friday?
• Can I insure it?
• Does the postman in my vicinity deliver letters on Saturday?
• Does delivering a letter on Saturday cost more?
• What is the weight/cost ratio for local deliveries?
• Can I get a return receipt?

The competency questions are a good starting point of evaluating the ontol-
ogy after it has been created. They should be considered as a necessary
but not sufficient condition.

2. Determine which existing ontologies we will reuse (if any)
There is a number of existing ontologies and vocabularies covering different
fields. Many are free to use, so it is always a good idea to put a bit of
work in researching existing solutions and evaluating their usability for
our project. It might be possible that our ontology could just refine an
existing one instead of defining all the concepts from scratch. We can use
some concepts directly or inherit from them. An example could be FOAF
(Friend-Of-A-Friend [32]) ontology, which provides a good way to describe
human resources in the Web.
Reusing an existing ontology might also be a requirement. Especially if our
system is to interact with other systems based on controlled vocabularies,
or are committed to some existing ontologies.

3. Gather important terms
This step consists of creating a vocabulary of terms from a domain we want
to describe with an ontology. Basically, we want to gather words which are
being used everyday by people working in our domain. For example, if we
wanted to create a bank ontology, we would probably write down things
like bank, account, client, credit, balance, cash and so on. In this step we are

52 M. Synak et al.

not concerned what is the meaning of these words or how concepts they
represent are the connected to each other. What is important is to get a
comprehensive list of terms which will be a base for further work.

4. Define classes
This and next step are closely intertwined to each other. It is very hard
to define a class structure before defining properties. Typically, we define
few classes in the hierarchy and their properties before moving to the
next group of classes, etc. Some possible approaches of developing a class
hierarchy are:

• Top-down approach, which starts with creating definition of the most
general concepts and then their specialization (creating subclasses);
the process is recursive for every class until it we reach the most specific
definitions.

• Bottom-up approach, which goes the other way – first we define the
most specific concepts ant then group them into more general concepts
by creating common superclass for them.

• Combination of both when we start with few general (or ‘top-level’)
concepts and few specific (or ‘bottom-level’) concepts and fill the
middle levels consequently.

Choosing the ‘correct’ approach may depend on the domain or the way the
developer sees it. The combination approach is often the easiest, because
middle-level concepts tend to be the most descriptive [160].
There are two important issues which are often encountered while defining
class hierarchy. First is to distinguish between classes and instances. We
must decide if some concepts represent a subclass or an instance of a cer-
tain class. For example we could muse if a concept of Letter to Denmark
should be described as subclass of Letter or its instance. While solving such
problems we should decide what level of specification our ontology needs.
Are we interested in describing single letters which have an address, sender
address, etc. or do we only need to sort them?
The second problem is to decide which characteristics of concept should
be represented in a number of subclasses and which should be put into
properties. For example there is a limited number of countries in the world.
We could create subclass for every one of them indicating letter destination
or simply put destinationCountry property in Letter class.

5. Define class properties
Properties (or slots) describe internal structure of concepts. A property
may point to simple value such as a string or a date (datatype proper-
ties) or a class instance (object properties). We use datatype properties
to describe object’s physical characteristics (often called ‘intrinsic’ prop-
erties) such as parcel’s weight as well as abstract concepts (or ‘extrinsic’
properties) i.e. deliveryDate for letter or name for postman. Object prop-
erties are commonly used to represent relationships between individuals. A
postman could have the hasBoss or worksAt object property. Of course we

Semantic Web and Ontologies 53

do not restrict usage of object properties to represent relationships only.
For example a postman could have property workSchedule pointing to an
individual, because schedule is a complex object. Object properties are also
often used to represent object’s parts, if the object is structured.
Properties are inherited by all subclasses. For example, if PostWorker has
property name, and Postman is a subclass of PostWorker, it will inherit
the name property. That is why properties should be attached to the most
general class that can have it. But we must keep in mind that ‘inheriting’
means something different in ontologies that it means, e.g. in object-
oriented languages. If a subclass inherits a property from its superclass
it only means that this property can also be applied to this subclass. It is
not a requirement.

6. Define properties restrictions
Property restrictions (or ‘slot facets’) work together with properties. We
use them to further specify usage of the property, its features, allowed
values, etc. Types of facets available strongly depend on the ontology lan-
guage used. Some languages are more expressive than others and have more
extensive vocabulary of ready-to-use constructs. The common facets are:

• Slot cardinality specifies how many values a property can have. For
example, we can specify that a PostVan has exactly one driver and
can carry no more than 10 mailBags (if we treat bags as individuals, i.e.
A bag can have ID, destination etc.). Cardinality is handled differently
in different ontology languages. For example, RDFS allows only spec-
ifying single cardinality (minimum cardinality of 0 or 1). OWL allows
specifying multiple cardinality. It means that every property can be
more precisely described using minimum and maximum cardinality.
While describing a fact that every van needs a driver requires sys-
tem supporting single cardinality only, we need a support for multiple
cardinality to represent the number of bags.

• Slot value-type defines what kind of values a property can have. Com-
mon value types for datatype properties are String, Number (or more
specific types such as Integer or Float), Boolean and Enumerated (a
list of specific allowed values such as express or airMail for letterType
property). Object properties have Instance-type value. A list of allowed
classes from which instances can come is defined.

• Domain and range are facets of object properties. A list of allowed
classes as described above is often called range of a slot. A list of
classes a property is attached to is called domain.4

7. Create instances
Creating instances is the last step. We choose a class, create an individual
of the chosen class and fill in property values. Instances form the actual
semantic description.

4 A property domain should not be confused with ontology domain, which should
be understood as ontology subject, domain of interest.

54 M. Synak et al.

5.2 Ontology Development Tools

This subsection describes shortly existing solutions for ontology development.
Detailed information could be found at referenced websites.

Ontology Editors

• Protegé [212] originates from Stanford University. It is a free, open source
ontology editor, written in Java which allows user create ontologies in
RDFS and OWL languages. Protegé allows to manipulate classes using a
tree-like structure (creating classes, subclasses, attaching properties, etc.).
Protegé itself is a standalone tool and does not support cooperative ontol-
ogy development. However, Protegé is easily extensible through a plug-in
system, so appropriate tools can be added. At the moment, Protegé sets
a standard for ontology editors.

• Ontolingua [177] is a distributed collaborative environment for ontol-
ogy browsing, creation, editing, etc. Ontolingua server is maintained by
the Knowledge Systems, AI Laboratory at Stanford University. Part of
Ontolingua is the Ontology Editor which allows to create and edit ontolo-
gies using the web browser. Access to Ontolingua server is free of charge,
but requires registration. Currently there is no way of creating your own
server with Ontolingua software. Server maintained by Stanford (and
two other at universities in Europe) hosts several ontology development
projects.

There are other ontology editors like OILed [171], designed for developing
DAML+OIL ontologies or DOE [62] (Differential Ontology Editor), focusing
on linguistics-inspired techniques, designed to complement advanced editors
like Protegé.

Merging/Mapping Tools

• Chimæra [43] is a part of Ontolingua software package from Stanford
University. Chimæra’s major function is merging ontologies together and
diagnosing individual or multiple ontologies. Chimæra can be used for
resolving naming conflicts, reorganizing taxonomies, etc.

• SMART/PROMPT [161] is an algorithm and tool for automated ontology
merging and alignment. It may be used to detect conflicts in the ontolo-
gies, suggest resolutions and guide a user through the whole process of
merging/aligning ontologies. PROMPT (SMART is the former name for
PROMPT) is implemented as an extension to Protegé ontology editor.

Acknowledgement

This material is based upon works supported by Enterprise Ireland under
Grant No. ILP/05/203 and by Science Foundation Ireland Grant No. SFI/02/
CE1/I131.

