Foreword to Second Edition (by David T. Clarkson) About the Authors Foreword to First Edition (by David T. Clarkson) Acknowledgments Abbreviations					
1. A	ssumptions and Approaches	1			
1 2 3 4 5 6 7	troduction – History, Assumptions, and Approaches What Is Ecophysiology? The Roots of Ecophysiology Physiological Ecology and the Distribution of Organisms Time Scale of Plant Response to Environment Conceptual and Experimental Approaches New Directions in Ecophysiology The Structure of the Book	1 1 2 4 6 7 7 8			
2. P	notosynthesis, Respiration, and Long-Distance Transport	11			
2	 A. Photosynthesis Introduction General Characteristics of the Photosynthetic Apparatus 2.1 The "Light" and "Dark" Reactions of Photosynthesis 2.1.1 Absorption of Photons 2.1.2 Fate of the Excited Chlorophyll 2.1.3 Membrane-Bound Photosynthetic Electron Transport and Bioenergetics 2.1.4 Photosynthetic Carbon Reduction 2.1.5 Oxygenation and Photorespiration 	11 11 11 12 13 14 14 15			

	2.2	Supp	ly and Demand of CO ₂ in the Photosynthetic Process	16
		2.2.1	-	16
		2.2.2	Supply of CO_2 – Stomatal and Boundary Layer	
			Conductances	21
		2.2.3	The Mesophyll Conductance	22
3	Res	ponse o	of Photosynthesis to Light	26
	3.1		ight Climate Under a Leaf Canopy	26
	3.2		ological, Biochemical, and Anatomical Differences	
			een Sun and Shade Leaves	27
		3.2.1	The Light-Response Curve of Sun and Shade Leaves	27
		3.2.2		29
		3.2.3	Biochemical Differences Between Shade and Sun	
			Leaves	32
		3.2.4	The Light-Response Curve of Sun and Shade	
			Leaves Revisited	33
		3.2.5	The Regulation of Acclimation	35
	3.3		s of Excess Irradiance	36
		3.3.1	Photoinhibition – Protection by Carotenoids of the	
		0.0.1	Xanthophyll Cycle	36
		3.3.2	Chloroplast Movement in Response to Changes in	
		0.0.2	Irradiance	41
	3.4	Respo	onses to Variable Irradiance	42
	0.12	3.4.1	Photosynthetic Induction	43
		3.4.2		43
		3.4.3	Post-illumination CO ₂ Assimilation and Sunfleck-	10
		0.110	Utilization Efficiency	45
		3.4.4	Metabolite Pools in Sun and Shade Leaves	45
		3.4.5	Net Effect of Sunflecks on Carbon Gain and	10
		01110	Growth	47
4	Part	itioning	g of the Products of Photosynthesis and Regulation	
-		Feedba		47
	4.1		ioning Within the Cell	47
	4.2		Term Regulation of Photosynthetic Rate by	
		Feedb		48
	4.3		-Induced Repression of Genes Encoding	
	110		n-Cycle Enzymes	51
	4.4		gical Impacts Mediated by Source-Sink Interactions	51
5			to Availability of Water	51
U	5.1		ation of Stomatal Opening	53
	5.2		-C _c Curve as Affected by Water Stress	54
	5.3		n-Isotope Fractionation in Relation to Water-Use	
	0.0	Efficie		56
	5.4		Sources of Variation in Carbon-Isotope Ratios in C_3	
	0.1	Plants		57
6	Fffee		oil Nutrient Supply on Photosynthesis	58
U	6.1		hotosynthesis—Nitrogen Relationship	58
	6.2		ctions of Nitrogen, Light, and Water	59
	6.3		synthesis, Nitrogen, and Leaf Life Span	59
7			esis and Leaf Temperature: Effects and Adaptations	60
'	7.1		s of High Temperatures on Photosynthesis	60
	7.1 7.2		of Low Temperatures on Photosynthesis	61
8			ir Pollutants on Photosynthesis	63
9	$C_4 Pl$		in a ontatalito on a notosynthesis	64
,	-	Introd	uction	64
	9.1 9.2		emical and Anatomical Aspects	64
	1.4	DIOCIE	mica and matomical rispects	UT.

		9.3	Intercellular and Intracellular Transport of Metabolites of the C ₄ Pathway	67
		9.4	Photosynthetic Efficiency and Performance at High and	07
		7.1	Low Temperatures	68
		9.5	$C_3 - C_4$ Intermediates	71
		9.6	Evolution and Distribution of C_4 Species	73
		9.7	Carbon-Isotope Composition of C ₄ Species	75
	10		A Plants	75
	10		Introduction	75
		10.2		76
		10.3	, ₀ , , ,	79
		10.4	5	79
		10.5		80
		10.6		81
	11	Spec	cialized Mechanisms Associated with Photosynthetic	
			oon Acquisition in Aquatic Plants	82
		11.1		82
		11.2	The CO ₂ Supply in Water	82
		11.3		83
		11.4	The Use of CO ₂ from the Sediment	84
		11.5	Crassulacean Acid Metabolism (CAM) in Aquatic Plants	85
		11.6	Carbon-Isotope Composition of Aquatic Plants	85
		11.7	1 1 5	
			Sedimentation	85
	12		cts of the Rising CO_2 Concentration in the Atmosphere	87
		12.1	, <u> </u>	~~~
		10.0	Concentrations	89
		12.2	- 1	00
	10	C	Effects on C_3 , C_4 , and CAM Plants	90
	15		mary: What Can We Gain from Basic Principles and Rates	00
	Ro	feren	ngle-Leaf Photosynthesis?	90 91
	ne	leien		71
2B.	Re	spira	ation	101
	1		oduction	101
	2	Gen	eral Characteristics of the Respiratory System	101
		2.1	The Respiratory Quotient	101
		2.2	Glycolysis, the Pentose Phosphate Pathway, and the	
			Tricarboxylic (TCA) Cycle	103
		2.3	Mitochondrial Metabolism	103
			2.3.1 The Complexes of the Electron-Transport Chain	104
			2.3.2 A Cyanide-Resistant Terminal Oxidase	105
			2.3.3 Substrates, Inhibitors, and Uncouplers	105
			2.3.4 Respiratory Control	106
		2.4	A Summary of the Major Points of Control of Plant	40-
			Respiration	107
		2.5	ATP Production in Isolated Mitochondria and In Vivo	107
			2.5.1 Oxidative Phosphorylation: The Chemiosmotic	105
			Model	107
		•	2.5.2 ATP Production In Vivo	107
		2.6	Regulation of Electron Transport via the Cytochrome	100
			and the Alternative Paths	109
			2.6.1 Competition or Overflow?	109
			2.6.2 The Intricate Regulation of the Alternative Oxidase	110

		2.6.3 Mitochondrial NAD(P)H Dehydrogenases That	
			112
	3	The Ecophysiological Function of the Alternative Path	112
			112
		3.2 Can We Really Measure the Activity of the Alternative	
			113
		3.3 The Alternative Path as an Energy Overflow	114
			117
		3.5 NADH Oxidation to Oxidize Excess Redox Equivalents	
			117
		3.6 Continuation of Respiration When the Activity of the	
			118
		3.7 A Summary of the Various Ecophysiological Roles of the	
		Alternative Oxidase	118
	4		119
	~		119
			119
			119
			120
			121
			122
			123
			123
			127
			129
			130
			131
			132
	5		132
	0		132
			132
			133
		5.2 Respiration Associated with Growth, Maintenance,	100
			134
		1	134
			136
		1	140
		1	140
	٢	·-··I · ······	140
	6	Plant Respiration: Why Should It Concern Us from an Ecological Point of View?	143
	D		143
	Re	ferences	1.4.1
20	T.	no Distance Transment of Assimilator	151
2C.		5	151
	1		151
	2		153
	3		
			154
		······································	154
			155
	4	0, 0	157
	5	0	157
	6	· · · · · · · · · · · · · · · · · · ·	160
	7	1	161
	Re	ferences	161

3.	Pl	ant V	Vater 1	Relations	163
	1	Intro	oductic	on	163
		1.1	The R	lole of Water in Plant Functioning	163
		1.2	Trans	piration as an Inevitable Consequence of Photosynthesis	164
	2		er Pote		165
	3	Wat		ilability in Soil	165
		3.1	The F	ield Capacity of Different Soils	169
		3.2		Movement Toward the Roots	170
		3.3	Rooti	ng Profiles as Dependent on Soil Moisture Content	171
		3.4		Sense Moisture Gradients and Grow Toward Moist	
			Patch		173
	4			tions of Cells	174
		4.1		otic Adjustment	175
		4.2		Vall Elasticity	175
		4.3		tic and Elastic Adjustment as Alternative Strategies	177
	_	4.4		tionary Aspects	178
	5			rement Through Plants	178
		5.1		oil—Plant—Air Continuum	178
		5.2		in Roots	179
		5.3		r in Stems	183
			5.3.1	0,	185
			5.3.2	The Flow of Water in the Xylem	186
			5.5.5	Cavitation or Embolism: The Breakage of the Xylem Water Column	100
			524	Can Embolized Conduits Resume Their Function?	188 191
				Trade-off Between Conductance and Safety	191
					192
			5.3.7		194
		5.4		• in Leaves and Water Loss from Leaves	195
		5.4	5.4.1		196
			5.4.2	The Control of Stomatal Movements and Stomatal	170
			0.1.2-	Conductance	199
			5.4.3	Effects of Vapor Pressure Difference or Transpiration Rate	1))
			0.1.0	on Stomatal Conductance	201
			5.4.4	Effects of Irradiance and CO_2 on Stomatal Conductance	203
			5.4.5	The Cuticular Conductance and the Boundary Layer	200
			0.1.0	Conductance	203
			5.4.6	Stomatal Control: A Compromise Between Carbon Gain	200
			0.1.0	and Water Loss	204
	6	Wat	er-Use	Efficiency	206
	U	6.1		-Use Efficiency and Carbon-Isotope Discrimination	206
		6.2		Fraits That Affect Leaf Temperature and Leaf Water Loss	207
		6.3		Storage in Leaves	209
	7			lability and Growth	210
	8			is to Drought	211
	0	8.1		cation Avoidance: Annuals and Drought-Deciduous	
			Specie	Ċ,	211
		8.2		cation Tolerance: Evergreen Shrubs	212
		8.3		rection Plants	212
	9			ter Relations and Freezing Tolerance	214
	0		Tolera	-	216
	1			irks: The Message That Transpires	216
		erenc			217
,					

xxi

4.	Leaf	Energy Budgets: Effects of Radiation and Temperature	225
	4A.	 The Plant's Energy Balance 1 Introduction 2 Energy Inputs and Outputs 2.1 Short Overview of a Leaf's Energy Balance 2.2 Short-Wave Solar Radiation 2.3 Long-Wave Terrestrial Radiation 2.4 Convective Heat Transfer 2.5 Evaporative Energy Exchange 2.6 Metabolic Heat Generation 3 Modeling the Effect of Components of the Energy Balance on Leaf Temperature 4 A Summary of Hot and Cool Topics References 	225 225 225 226 229 230 232 234 234 234 235 235
	4B.	Effects of Radiation and Temperature	
	чD.	 Introduction Radiation 2.1 Effects of Excess Irradiance 2.2 Effects of Ultraviolet Radiation 2.2.1 Damage by UV 2.2.2 Protection Against UV: Repair or Prevention 	237 237 237 237 237 238 238
		 3 Effects of Extreme Temperatures 3.1 How Do Plants Avoid Damage by Free Radicals at Low Temperature? 3.2 Heat-Shock Proteins 3.3 Are Isoprene and Monoterpene Emissions an Adaptation 	239 239 241
		 3.3 Are isoprene and Monoterpene Emissions an Adaptation to High Temperatures? 3.4 Chilling Injury and Chilling Tolerance 3.5 Carbohydrates and Proteins Conferring Frost 	241 242
		 4 Global Change and Future Crops References 	243 244 244
5.		ng-Up Gas Exchange and Energy Balance 1 the Leaf to the Canopy Level	247
	1 In 2 Ca 3 Ca 4 Ca 5 Ca	troduction anopy Water Use anopy CO ₂ Fluxes anopy Water-Use Efficiency anopy Effects on Microclimate: A Case Study ming for a Higher Level	247 247 251 252 253 253 253
6.	Mine	eral Nutrition	255
		troduction quisition of Nutrients Nutrients in the Soil 2.1.1 Nutrient Availability as Dependent on Soil Age	255 255 255 255

		2.1.2	Nutrient Supply Rate	257
		2.1.3		259
	2.2	Root	Traits That Determine Nutrient Acquisition	262
		2.2.1	Increasing the Roots' Absorptive Surface	262
		2.2.2	Transport Proteins: Ion Channels and Carriers	263
		2.2.3		265
		2.2.4	Acquisition of Nitrogen	269
		2.2.5	Acquisition of Phosphorus	270
			Changing the Chemistry in the Rhizosphere	275
			Rhizosphere Mineralization	279
		2.2.8	Root Proliferation in Nutrient-Rich Patches: Is It Adaptive?	280
	2.3	Sensit	tivity Analysis of Parameters Involved in Phosphate	
			isition	282
3	Nut		cquisition from "Toxic" or "Extreme" Soils	284
	3.1	Acid		284
		3.1.1	Aluminum Toxicity	284
		3.1.2	Alleviation of the Toxicity Symptoms by Soil	
			Amendment	287
		3.1.3	Aluminum Resistance	287
	3.2	Calca	reous Soils	288
	3.3		with High Levels of Heavy Metals	289
		3.3.1	Why Are the Concentrations of Heavy	_02
			Metals in Soil High?	289
		3.3.2	Using Plants to Clean or Extract Polluted	_0,
		•	Water and Soil: Phytoremediation and Phytomining	290
		3.3.3	Why Are Heavy Metals So Toxic to Plants?	291
		3.3.4		291
		3.3.5	Biomass Production of Sensitive	
		0.0.0	and Resistant Plants	296
	3.4	Saline	Soils: An Ever-Increasing Problem in Agriculture	296
	0.1	3.4.1	Glycophytes and Halophytes	297
			Energy-Dependent Salt Exclusion from Roots	297
			Energy-Dependent Salt Exclusion from the Xylem	298
		3.4.4	Transport of Na ⁺ from the Leaves to the Roots	270
		5.1.1	and Excretion via Salt Glands	298
		3.4.5	Compartmentation of Salt Within the Cell	290
		5.4.5	and Accumulation of Compatible Solutes	301
	3.5	Flood	ed Soils	301
4			ient-Use Efficiency	302
4	4.1		tion in Nutrient Concentration	302
	4.1		Tissue Nutrient Concentration	302
				302
	4.2		Tissue Nutrient Requirement	-
	4.2		ent Productivity and Mean Residence Time	304 304
			Nutrient Productivity	504
		4.2.2	The Mean Residence Time of Nutrients	204
			in the Plant	304
	4.3		ent Loss from Plants	306
			Leaching Loss	306
		4.3.2	Nutrient Loss by Senescence	307
_	4.4		stem Nutrient-Use Efficiency	308
5			utrition: A Vast Array of Adaptations and Acclimations	310
Re	feren	ces		310

xxiii

7.	Growth and Allocation								
	1	Introduction: What Is Growth?							
	2	Gro	wth of	Whole Plants and Individual Organs	321				
		2.1	Grow	vth of Whole Plants	322				
			2.1.1	A High Leaf Area Ratio Enables Plants to Grow Fast	322				
			2.1.2	Plants with High Nutrient Concentrations Can Grow					
				Faster	322				
		2.2		7th of Cells	323				
				Cell Division and Cell Expansion: The Lockhart Equation	323				
			2.2.2	Cell-Wall Acidification and Removal of Calcium Reduce					
				Cell-Wall Rigidity	324				
			2.2.3	1 5	207				
			224	Extensibility and Not by Turgor	327				
			2.2.4	The Physical and Biochemical Basis of Yield Threshold	328				
			225	and Cell-Wall Yield Coefficient	328				
	3	The	2.2.5	The Importance of Meristem Size plogical Basis of Variation in RGR – Plants Grown with Free	520				
	3		-	Nutrients	328				
		3.1		Is a Major Factor Associated with Variation in RGR	330				
		3.2		Thickness and Leaf Mass Density	332				
		3.3		omical and Chemical Differences Associated with Leaf	002				
		0.0		Density	332				
		3.4		Assimilation Rate, Photosynthesis, and Respiration	333				
		3.5		and the Rate of Leaf Elongation and Leaf Appearance	333				
		3.6		and Activities per Unit Mass	334				
		3.7		and Suites of Plant Traits	334				
	4	Allo	cation	to Storage	335				
		4.1		Concept of Storage	336				
		4.2		nical Forms of Stores	337				
		4.3	Storag	ge and Remobilization in Annuals	337				
		4.4	The S	torage Strategy of Biennials	338				
		4.5	Storag	ge in Perennials	338				
		4.6		of Growth and Storage: Optimization	340				
	5	Env		ental Influences	340				
		5.1		th as Affected by Irradiance	341				
			5.1.1		341				
				Effects of the Photoperiod	345				
		5.2		th as Affected by Temperature	346				
			5.2.1	Effects of Low Temperature on Root Functioning	346				
		= 2		Changes in the Allocation Pattern	346				
		5.3		th as Affected by Soil Water Potential and Salinity	347				
			5.3.1	Do Roots Sense Dry Soil and Then Send Signals	348				
			5.3.2	to the Leaves?	348				
			5.3.3	ABA and Leaf Cell-Wall Stiffening Effects on Root Elongation	348				
			5.3.4	A Hypothetical Model That Accounts for Effects	040				
			5.5.4	of Water Stress on Biomass Allocation	349				
		5.4	Grow	th at a Limiting Nutrient Supply	349				
		0.7	5.4.1	Cycling of Nitrogen Between Roots and Leaves	349				
			5.4.2	Hormonal Signals That Travel via the Xylem	- ×/				
				to the Leaves	350				
			5.4.3	Signals That Travel from the Leaves to the Roots	351				
			5.4.4		351				

5.4.4 Integrating Signals from the Leaves and the Roots

xxiv

			5.4.5	Effects of Nitrogen Supply on Leaf Anatomy and	0-0
			F 4 4	Chemistry	352
			5.4.6	Nitrogen Allocation to Different Leaves, as Dependent	250
		5.5	Plant (on Incident Irradiance Growth as Affected by Soil Compaction	352 354
		0.0		Effects on Biomass Allocation: Is ABA Involved?	354
					554
			0.0.2	of the Lockhart Equation	354
		5.6	Growt	th as Affected by Soil Flooding	355
		0.0			356
				Effects on Water Uptake and Leaf Growth	357
				Effects on Adventitious Root Formation	358
				Effects on Radial Oxygen Loss	358
		5.7		th as Affected by Submergence	358
				Gas Exchange	359
				Perception of Submergence and Regulation of Shoot	,
				Elongation	359
		5.8	Growt	th as Affected by Touch and Wind	360
		5.9		th as Affected by Elevated Concentrations of CO ₂	
				Atmosphere	361
	6	Ada		s Associated with Inherent Variation in Growth Rate	362
		6.1		ind Slow-Growing Species	362
		6.2		th of Inherently Fast- and Slow-Growing Species Under	
				rce-Limited Conditions	363
			6.2.1	Growth at a Limiting Nutrient Supply	364
				Growth in the Shade	364
		6.3	Are Th	nere Ecological Advantages Associated with a High or	
			Low R	5 0	364
			6.3.1	Various Hypotheses	364
				Selection on RGR _{max} Itself, or on Traits That Are	
				Associated with RGR _{max} ?	365
			6.3.3	An Appraisal of Plant Distribution Requires Information	
				on Ecophysiology	366
	7	Gro	wth and	Allocation: The Messages About Plant Messages	367
		eferen			367
8.	Li	fe Cy	cles: E	Environmental Influences and Adaptations	375
	1	Intro	oduction	n	375
	2	Seed	l Dorma	ancy and Germination	375
		2.1		Seed Coats	376
		2.2	Germi	nation Inhibitors in the Seed	377
		2.3		s of Nitrate	378
		2.4	Other	External Chemical Signals	378
		2.5		s of Light	380
		2.6		s of Temperature	382
		2.7	Physio	ological Aspects of Dormancy	384
		2.8	Summ	ary of Ecological Aspects of Seed Germination	
				ormancy	385
	3	Dev		ntal Phases	385
	-	3.1		ng Phase	385
		3.2		le Phase	386
				Delayed Flowering in Biennials	387
				Juvenile and Adult Traits	388

			Vegetative Reproduction4 Delayed Greening During Leaf Development	388	
			in Tropical Trees	390 391	
	3.3	3.3 Reproductive Phase			
		3.3.1	0, 0, 0, 0,	201	
		221	and Short-Day Plants	391	
		3.3.2	2 Do Plants Sense the Difference Between a Certain Daylength in Spring and Autumn?	393	
		3.3.3		393	
		3.3.4		394	
		3.3.5		394	
		3.3.6	0	395	
	3.4	Frui	0	396	
	3.5		escence	397	
4			persal	397	
	4.1	Disp	persal Mechanisms	397	
	4.2		-History Correlates	398	
5	The	Mess	age to Disperse: Perception, Transduction,		
	and	Resp	onse	398	
Re	eferen	ces		398	
R:	otia	[],,	lences	403	
DI	one	uuu	ences	403	
9 A	\ S	vmh	iotic Associations	403	
)1	1 . 5	-	roduction	403	
	2		corrhizas	403	
	-	2.1	Mycorrhizal Structures: Are They Beneficial for Plant	100	
			Growth?	404	
			2.1.1 The Infection Process	408	
			2.1.2 Mycorrhizal Responsiveness	410	
		2.2	Nonmycorrhizal Species and Their Interactions		
			with Mycorrhizal Species	412	
		2.3	Phosphate Relations	413	
			2.3.1 Mechanisms That Account for Enhanced		
			Phosphate Absorption by Mycorrhizal Plants	413	
			2.3.2 Suppression of Colonization at High Phosphate		
			Availability	415	
		2.4	Effects on Nitrogen Nutrition	416	
		2.5	Effects on the Acquisition of Water	417	
		2.6	Carbon Costs of the Mycorrhizal Symbiosis	418	
	_	2.7	Agricultural and Ecological Perspectives	419	
	3		ociations with Nitrogen-Fixing Organisms	421	
		3.1	Symbiotic N ₂ Fixation Is Restricted to a Fairly Limited	400	
		~ ~	Number of Plant Species	422	
		3.2	Host—Guest Specificity in the Legume—Rhizobium	404	
			Symbiosis	424	
		3.3	The Infection Process in the Legume—Rhizobium	404	
			Association	424 425	
			3.3.1 The Role of Flavonoids 3.3.2 <i>Rhizobial</i> nod <i>Genes</i>	425 425	
			3.3.3 Entry of the Bacteria	425 427	
			3.3.4 Final Stages of the Establishment of the Symbiosis	427	
		3.4	Nitrogenase Activity and Synthesis of Organic Nitrogen	420	
		0.4	integender neuvry and synthesis of Organie Millogen		

9.

		3.5 Carbon and Energy Metabolism of the Nodules3.6 Quantification of N₂ Fixation In Situ	431 432								
		3.7 Ecological Aspects of the Nonsymbiotic Association with									
		- 0 0	433 434								
	1		435 436								
	4 Endosymbionts5 Plant Life Among MicrosymbiontsReferences										
9B.	Ecological Biochemistry: Allelopathy and Defence										
	ag	ainst Herbivores	445								
	1	Introduction	445								
	2	Allelopathy (Interference Competition)	445								
	3		448								
		0	448								
			451								
			451								
		0,	455								
	4	3.5 Secondary Metabolites for Medicines and Crop Protection Environmental Effects on the Production of Secondary Plant	457								
	•		460								
			460								
		4.2 Induced Defense and Communication Between									
		Neighboring Plants	462								
		4.3 Communication Between Plants and Their Bodyguards	464								
	5		466								
		5.1 Diversion of Resources from Primary Growth	466								
		5.2 Strategies of Predators	468								
		5.3 Mutualistic Associations with Ants and Mites	469								
	6	, , , , , , , , , , , , , , , , , , ,	469								
	7	Secondary Chemicals and Messages That Emerge from									
	_	A	472								
	Re	ferences	473								
9C.	Ef	fects of Microbial Pathogens	479								
	1	Introduction	479								
	2	1	479								
	3		481								
	4	Cross-Talk Between Induced Systemic Resistance and Defense	405								
	_		485								
		Messages from One Organism to Another ferences	488 488								
9D.		arasitic Associations	491								
	1	Introduction	491								
	2	Growth and Development	492								
		2.1 Seed Germination	492								
		2.2 Haustoria Formation2.3 Effects of the Parasite on Host Development	493 496								
	2	Water Relations and Mineral Nutrition	490								
	3 4	Carbon Relations	490 500								
	4	Carbon Relations	500								

	5 Re	What Can We Extract from This Chapter? eferences	501 501			
9E.	Interactions Among Plants					
<u>у</u> ц.	1	Introduction	505 505			
	2	Theories of Competitive Mechanisms	509			
	3	How Do Plants Perceive the Presence of Neighbors?	509			
	4	Relationship of Plant Traits to Competitive Ability	512			
	т	4.1 Growth Rate and Tissue Turnover	512			
		4.2 Allocation Pattern, Growth Form, and Tissue Mass	012			
		Density	513			
		4.3 Plasticity	514			
	5	Traits Associated with Competition for Specific Resources	516			
		5.1 Nutrients	516			
		5.2 Water	517			
		5.3 Light	518			
		5.4 Carbon Dioxide	518			
	6	Positive Interactions Among Plants	521			
		6.1 Physical Benefits	521			
		6.2 Nutritional Benefits	521			
		6.3 Allelochemical Benefits	521			
	7	Plant – Microbial Symbiosis	522			
		Succession	524			
	9	What Do We Gain from This Chapter?	526			
	Re	eferences	527			
9F.	Carnivory					
		Introduction	533			
	2	Structures Associated with the Catching of the Prey and				
		Subsequent Withdrawal of Nutrients from the Prey	533			
	3	Some Case Studies	536			
		3.1 Dionaea Muscipula	537			
		3.2 The Suction Traps of Utricularia	539			
		3.3 The Tentacles of Drosera	541			
		3.4 Pitchers of Sarracenia	542			
		3.5 Passive Traps of <i>Genlisea</i>	542			
	4	The Message to Catch	543			
	Re	ferences	543			
Ro	le ir	n Ecosystem and Global Processes	545			
10A.	r	Decomposition	545			
	1	Introduction	545			
	2	Litter Quality and Decomposition Rate	546			
	_	2.1 Species Effects on Litter Quality: Links with Ecological				
		Strategy	546			
		2.2 Environmental Effects on Decomposition	547			
	3	The Link Between Decomposition Rate and Nutrient Supply	548			
	0	3.1 The Process of Nutrient Release	548			
		3.2 Effects of Litter Quality on Mineralization	549			
		3.3 Root Exudation and Rhizosphere Effects	550			
	4	The End Product of Decomposition	552			
		ferences	552			
	NEIGICINES					

xxviii

10.

10B.	Ecosystem and Global Processes:						
	Ecophysiological Controls						
	1		oduction	555			
	2	Ecosystem Biomass and Production					
		2.1	Scaling from Plants to Ecosystems	555			
		2.2	Physiological Basis of Productivity	556			
		2.3	Disturbance and Succession	558			
		2.4	Photosynthesis and Absorbed Radiation	559			
		2.5	Net Carbon Balance of Ecosystems	561			
		2.6	The Global Carbon Cycle	561			
	3	Nut	rient Cycling	563			
		3.1	Vegetation Controls over Nutrient Uptake and Loss	563			
		3.2	Vegetation Controls over Mineralization	565			
	4	Ecos	system Energy Exchange and the Hydrologic Cycle	565			
		4.1	Vegetation Effects on Energy Exchange	565			
			4.1.1 Albedo	565			
			4.1.2 Surface Roughness and Energy Partitioning	566			
		4.2	Vegetation Effects on the Hydrologic Cycle	567			
			4.2.1 Evapotranspiration and Runoff	567			
			4.2.2 Feedbacks to Climate	568			
	5	Mov	ving to a Higher Level: Scaling from Physiology to the Globe	568			
	References						
Gloss	ary	,		573			
Index							

xxix