Contents

Preface

1 Hearing-Aid Technology
Types of Hearing Aids 1
Canal Aids 2
In-the-Ear Aids 3
Behind-the-Ear Aids 4
Open Fitting BTE Aids 4
Body-Worn Aids 4
From Analog to Digital 4
Moore's Law 6
Digital Current Drain 7
Analog and Digital Power Consumption 8
Digital Circuit Components 10
Analog-to-Digital Converter 10
Digital Signal Processor 11
Memory 12
Clock 13
Batteries 14
Concluding Remarks 15
References 16

2 Signal Processing Basics
Signal and System Properties 17
Sequences 17
Linear Time Invariance 18
Convolution 19
Correlation 22
Transfer Functions 24
5 Adaptive and Multimicrophone Arrays
Two-Microphone Adaptive Array
Adaptive Delay
Adaptive Gain
Adaptive Filter
Delay-And-Sum Beam-forming
Adaptive Arrays
Superdirective Arrays
Widely-Spaced Arrays
Array Benefits
Concluding Remarks
References

6 Wind Noise
Turbulence
Hearing-Aid Measurements
Airflow and Turbulence
Sound Pressure
Signal Characteristics
Spectrum
Temporal Fluctuations
Correlation
Wind-Noise Reduction
Directional Microphones
7 Feedback Cancellation

The Feedback System
System Equations
System Response
Gain-Reduction Solutions
Adaptive Feedback Cancellation
System Equations
LMS Adaptation
Constrained Adaptation
Adaptation Equations
Initialization
Simulation Results
Decorrelation Techniques
Interrupted Adaptation
Delay
Filtered-X Algorithm
Frequency-Domain Adaptation
Processing Limitations
Room Reflections
Measurement Procedure
Measurement Results
Maximum Stable Gain
Nonlinear Distortion
Concluding Remarks
References

8 Dynamic-Range Compression

Does Compression Help?
Algorithm Design Concerns
Frequency Resolution
Processing Delay
Single-Channel Compression
Input/Output Rules
Volume Control
Envelope Detection
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multichannel Compression</td>
<td>236</td>
</tr>
<tr>
<td>Temporal Response</td>
<td>236</td>
</tr>
<tr>
<td>Swept Frequency Response</td>
<td>240</td>
</tr>
<tr>
<td>Frequency-Domain Compression</td>
<td>242</td>
</tr>
<tr>
<td>Ideal FFT System</td>
<td>242</td>
</tr>
<tr>
<td>Practical FFT System</td>
<td>244</td>
</tr>
<tr>
<td>Side-Branch Structure</td>
<td>246</td>
</tr>
<tr>
<td>Frequency Warping</td>
<td>247</td>
</tr>
<tr>
<td>Digital Frequency Warping</td>
<td>247</td>
</tr>
<tr>
<td>Warped Compressor System</td>
<td>249</td>
</tr>
<tr>
<td>System Delay Comparison</td>
<td>255</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>258</td>
</tr>
<tr>
<td>References</td>
<td>259</td>
</tr>
</tbody>
</table>

9 Single-Microphone Noise Suppression

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of Speech and Noise Signals</td>
<td>264</td>
</tr>
<tr>
<td>Low-Level Expansion</td>
<td>270</td>
</tr>
<tr>
<td>Envelope Valley Tracking</td>
<td>272</td>
</tr>
<tr>
<td>Bandwidth Reduction</td>
<td>274</td>
</tr>
<tr>
<td>Adaptive High-Pass Filter</td>
<td>275</td>
</tr>
<tr>
<td>Adaptive Low-Pass Filter</td>
<td>276</td>
</tr>
<tr>
<td>“Zeta Noise Blocker”</td>
<td>277</td>
</tr>
<tr>
<td>Envelope Modulation Filters</td>
<td>278</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>287</td>
</tr>
</tbody>
</table>

10 Spectral Subtraction

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Estimation</td>
<td>293</td>
</tr>
<tr>
<td>Valley Detection</td>
<td>293</td>
</tr>
<tr>
<td>Minima Statistics</td>
<td>294</td>
</tr>
<tr>
<td>Histogram</td>
<td>298</td>
</tr>
<tr>
<td>Wiener Filter</td>
<td>300</td>
</tr>
<tr>
<td>Spectral Subtraction</td>
<td>302</td>
</tr>
<tr>
<td>Classical Approaches</td>
<td>302</td>
</tr>
<tr>
<td>General Equation</td>
<td>304</td>
</tr>
<tr>
<td>Nonlinear Expansion</td>
<td>306</td>
</tr>
<tr>
<td>Ephraim-Malah Algorithm</td>
<td>307</td>
</tr>
<tr>
<td>Auditory Masking</td>
<td>309</td>
</tr>
<tr>
<td>A Fundamental Compromise</td>
<td>311</td>
</tr>
<tr>
<td>Algorithm Effectiveness</td>
<td>312</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>314</td>
</tr>
<tr>
<td>References</td>
<td>315</td>
</tr>
</tbody>
</table>
II Spectral Contrast Enhancement

Auditory Filters in the Damaged Cochlea 320
Physiological Measurements 320
Tuning Curves 320
Neural Firing Patterns 321
Perceptual Measurements 324
Processing Strategies 328
Spectral Valley Suppression 328
Spectral Contrast Modification 331
Raise Spectrum to a Power 331
Spectral Filtering 334
Excess Upward Spread of Masking 340
F2/F1 Ratio 341
Processing Comparison 342
Combining Spectral Contrast Enhancement with Compression 345
Concluding Remarks 348
References 350

12 Sound Classification

The Rationale for Classification 357
Signal Features 359
Feature Selection 361
Mutual Information 362
Feature Selection Using Mutual Information 364
Classifier Algorithms 367
Training the Classifier 368
Types of Classifiers 369
Clustering 370
Linear Discriminant 371
Support Vector Machine 372
Neural Network 374
Hidden Markov Model 377
Bayes Classifier 379
Personalizing the Classifier 381
Classification Examples 382
Number of Features 383
Isolated Signals vs. Mixtures 385
Concluding Remarks 387
APPENDIX 12-A 388
References 395
Binaural Signal Processing

The "Cocktail Party" Problem 402
Signal Transmission 404
Binaural Compression 406
Compression Using Binaural Loudness Summation 406
Auditory Efferents 409
Compression Using Auditory Efferents 410
Binaural Noise Suppression 416
Interaural Cross-Correlation 418
Binaural Wiener Filter 421
Binaural Signal Difference 423
Binaural Spectral Subtraction 425
Directional Cues 427
Localization Model 429
Dichotic Band Splitting 432
Concluding Remarks 434
References 435

Index 441