Contents

Chapter I Introduction to Analysis of the Infinite

I.1	Cartesian Coordinates and Polynomial Functions	2
	Descartes's Geometry Polynomial Functions	8 10
	Exercises	14
I.2	Exponentials and the Binomial Theorem Binomial Theorem Exponential Funcion Exercises	17 18 25 28
1.3	Logarithms and Areas Computation of Logarithms Computation of Areas Area of the Hyperbola and Natural Logarithms Exercises	29 30 33 34 39
I.4	Trigonometric Functions Basic Relations and Consequences Series Expansions Inverse Trigonometric Functions Computation of Pi Exercises	40 43 46 49 52 55
I.5	Complex Numbers and Functions. Euler's Formula and Its Consequences A New View on Trigonometric Functions Euler's Product for the Sine Function Exercises	57 58 61 62 66
I.6	Continued Fractions Origins Convergents Irrationality Exercises	68 68 71 76 78

Chapter II Differential and Integral Calculus

II.1	The Derivative The Derivative Differentiation Rules Parametric Representation and Implicit Equations Exercises	81 81 84 88 89
II.2	Higher Derivatives and Taylor Series. The Second Derivative De Conversione Functionum in Series Exercises	91 91 94 97
II.3	Envelopes and Curvature Envelope of a Family of Straight Lines The Caustic of a Circle Envelope of Ballistic Curves Curvature Exercises	98 98 99 101 101 105
II.4	Integral Calculus	107 107

	Applications Integration Techniques Taylor's Formula with Remainder Exercises	109 112 116 117
11.5	Functions with Elementary Integral Integration of Rational Functions Useful Substitutions Exercises	118 118 123 125
11.6	Approximate Computation of Integrals. Series Expansions Numerical Methods Asymptotic Expansions Exercises	126 126 128 131 132
II.7	Ordinary Differential Equations	134 139 140 143
II.8	Linear Differential Equations	144 145 148 152 152
II.9	Numerical Solution of Differential Equations Euler's Method	154 154 156 158 159
II.10	The Euler-Maclaurin Summation Formula Euler's Derivation of the Formula De Usu Legitimo Formulae Summatoriae Maclaurinianae Stirling's Formula The Harmonic Series and Euler's Constant Exercises	160 163 165 167 169

Chapter III Foundations of Classical Analysis

III.1	Infinite Sequences and Real Numbers	. 172
	Convergence of a Sequence	. 172
	Construction of Real Numbers	.177
	Monotone Sequences and Least Unper Bound	182
	Accumulation Points	184
	Exercises	. 185
111.2	Infinite Series	. 188
~~~~	Criteria for Convergence	. 189
	Absolute Convergence	192
	Double Series	195
	The Cauchy Product of Two Series	. 197
	Exchange of Infinite Series and Limits	. 199
	Exercises	. 200
111.3	Real Functions and Continuity	202
	Continuous Functions	204
	The Intermediate Value Theorem	206
	The Maximum Theorem	206
	Monotone and Inverse Functions	208
	Limit of a Function	200
	Exercises	210
		. 210

Weid Unif Exer	Form Continuity	213 216 217 220
III.5 The Defi Integ Ineq Exer	Riemann Integral nitions and Criteria of Integrability grable Functions ualities and the Mean Value Theorem gration of Infinite Series	221 221 226 228 230 232
III.6 Diffe The The Deri Exer	erentiable Functions Fundamental Theorem of Differential Calculus Rules of de L'Hospital vatives of Infinite Series rcises	235 239 242 245 246
III.7 Pow Dete Com Diffe Tayl Exer	rer Series and Taylor Series	248 249 250 251 252 252
III.8 Imp Boun Unb Eule Exer	roper Integrals	257 257 260 261 262
III.9 Two Cont Weid Exer	• Theorems on Continuous Functions	263 263 265 269

# Chapter IV Calculus in Several Variables

IV.1	Topology of n-Dimensional Space   Distances and Norms   Convergence of Vector Sequences   Neighborhoods, Open and Closed Sets   Compact Sets   Exercises	273 273 275 275 278 283 285
IV.2	Continuous Functions Continuous Functions and Compactness Uniform Continuity and Uniform Convergence Linear Mappings Hausdorff's Characterization of Continuous Functions Integrals with Parameters Exercises	287 289 290 293 294 297 298
IV.3	Differentiable Functions of Several Variables	300 302 304 305 .308 .309 .311 313
IV.4	Higher Derivatives and Taylor Series Taylor Series for Two Variables	. 316 . 319

Taylor Series for <i>n</i> Variables	
Maximum and Minimum Problems	
Conditional Minimum (Lagrange Multiplier)	
Exercises	
IV.5 Multiple Integrals	
Double Integrals over a Rectangle	
Null Sets and Discontinuous Functions	
Arbitrary Bounded Domains	
The Transformation Formula for Double Integrals	
Integrals with Unbounded Domain	
Exercises	
Appendix: Original Quotations	351
Defense	259
Kelerences	
	2(0
Symbol Index	
Index	