CONTENTS

INTRODUCTION TO CHAPTERS IV, V AND VI V
CONTENTS VII
CHAPTER IV COXETER GROUPS AND TITS SYSTEMS
§1. Coxeter Groups 1

1. Length and reduced decompositions 1
2. Dihedral groups 2
3. First properties of Coxeter groups 4
4. Reduced decompositions in a Coxeter group 5
5. The exchange condition 7
6. Characterisation of Coxeter groups 10
7. Families of partitions 10
8. Subgroups of Coxeter groups 12
9. Coxeter matrices and Coxeter graphs 13
§2. Tits Systems 15
10. Definitions and first properties 15
11. An example 17
12. Decomposition of G into double cosets 18
13. Relations with Coxeter systems 19
14. Subgroups of G containing B 21
15. Parabolic subgroups 22
16. The simplicity theorem 23
Appendix. Graphs 27
17. Definitions 27
18. The connected components of a graph 27
19. Forests and trees 29
Exercises for §1. 31
Exercises for $\S 2$. 44

CHAPTER V GROUPS GENERATED BY REFLECTIONS

§ 1. Hyperplanes, chambers and facets 61

1. Notations 61
2. Facets 62
3. Chambers 64
4. Walls and faces 65
5. Intersecting hyperplanes 67
6. Simplicial cones and simplices 68
§2. Reflections 70
7. Pseudo-reflections 70
8. Reflections 71
9. Orthogonal reflections 73
10. Orthogonal reflections in a euclidean affine space 73
11. Complements on plane rotations 74
§3. Groups of displacements generated by reflections 76
12. Preliminary results 77
13. Relation with Coxeter systems 78
14. Fundamental domain, stabilisers 79
15. Coxeter matrix and Coxeter graph of W 81
16. Systems of vectors with negative scalar products 82
17. Finiteness theorems 84
18. Decomposition of the linear representation of W on T 86
19. Product decomposition of the affine space E 88
20. The structure of chambers 89
21. Special points 91
§4. The geometric representation of a Coxeter group 94
22. The form associated to a Coxeter group 94
23. The plane $\mathrm{E}_{s, s^{\prime}}$ and the group generated by σ_{s} and $\sigma_{s^{\prime}}$ 95
24. The group and representation associated to a Coxeter matrix 96
25. The contragredient representation 97
26. Proof of lemma 1 99
27. The fundamental domain of W in the union of the chambers 101
28. Irreducibility of the geometric representation of a Coxeter group 102
29. Finiteness criterion 103
30. The case in which B_{M} is positive and degenerate 105
§5. Invariants in the symmetric algebra 108
31. Poincaré series of graded algebras 108
32. Invariants of a finite linear group: modular properties 110
33. Invariants of a finite linear group: ring-theoretic properties 112
34. Anti-invariant elements 117
35. Complements 119
§6. The Coxeter transformation 121
36. Definition of Coxeter transformations 121
37. Eigenvalues of a Coxeter transformation: exponents 122
Appendix: Complements on linear representations 129
Exercises for $\S 2$. 133
Exercises for § 3. 134
Exercises for $\S 4$. 137
Exercises for § 5. 144
Exercises for § 6. 150
CHAPTER VI ROOT SYSTEMS
§ 1. Root systems 155
38. Definition of a root system 155
39. Direct sum of root systems 159
40. Relation between two roots 160
41. Reduced root systems 164
42. Chambers and bases of root systems 166
43. Positive roots 168
44. Closed sets of roots 173
45. Highest root 178
46. Weights, radical weights 179
47. Fundamental weights, dominant weights 180
48. Coxeter transformations 182
49. Canonical bilinear form 184
§ 2. Affine Weyl group 186
50. Affine Weyl group 186
51. Weights and special weights 187
52. The normaliser of W_{a} 188
53. Application: order of the Weyl group 190
54. Root systems and groups generated by reflections 191
§3. Exponential invariants 194
55. The group algebra of a free abelian group 194
56. Case of the group of weights: maximal terms 195
57. Anti-invariant elements 196
58. Invariant elements 199
§4. Classification of root systems 201
59. Finite Coxeter groups 201
60. Dynkin graphs 207
61. Affine Weyl group and completed Dynkin graph 210
62. Preliminaries to the construction of root systems 212
63. Systems of type $\mathrm{B}_{l}(l \geq 2)$ 214
64. Systems of type $\mathrm{C}_{l}(l \geq 2)$ 216
65. Systems of type $\mathrm{A}_{l}(l \geq 1)$ 217
66. Systems of type $\mathrm{D}_{l}(l \geq 3)$ 220
67. System of type F_{4} 223
68. System of type E_{8} 225
69. System of type E_{7} 227
70. System of type E_{6} 229
71. System of type G_{2} 231
72. Irreducible non-reduced root systems 233
Exercises for $\S 1$. 235
Exercises for $\$ 2$. 240
Exercises for § 3 241
Exercises for $\S 4$. 242
HISTORICAL NOTE (Chapters IV, V and VI) 249
BIBLIOGRAPHY 255
INDEX OF NOTATION 259
INDEX OF TERMINOLOGY 261
PLATE I. Systems of type $A_{l}(l \geq 1)$ 265
PLATE II. Systems of type $B_{l}(l \geq 2)$ 267
PLATE III. Systems of type $C_{l}(l \geq 2)$ 269
PLATE IV. Systems of type $D_{l}(l \geq 3)$ 271
PLATE V. System of type \mathbf{E}_{6} 275
PLATE VI. System of type E_{7} 279
PLATE VII. System of type E_{8} 283
PLATE VIII. System of type $\mathbf{F}_{\mathbf{4}}$ 287
PLATE IX. System of type \mathbf{G}_{2} 289
PLATE X. Irreducible systems of rank 2 291
Summary of the principal properties of root systems 293
