CONTENTS

INTRODUCTION TO CHAPTERS IV, V AND VI	v
CONTENTS	VII

CHAPTER IV COXETER GROUPS AND TITS SYSTEMS

§1.	Cox	eter Groups	1
	1.	Length and reduced decompositions	1
	2.	Dihedral groups	2
	3.	First properties of Coxeter groups	4
	4.	Reduced decompositions in a Coxeter group	5
	5.	The exchange condition	7
	6.	Characterisation of Coxeter groups	10
	7.	Families of partitions	10
	8.	Subgroups of Coxeter groups	12
	9.	Coxeter matrices and Coxeter graphs	13
§2.	Tits	Systems	15
	1.	Definitions and first properties	15
	2.	An example	17
	3.	Decomposition of G into double cosets	18
	4.	Relations with Coxeter systems	19
	5.	Subgroups of G containing B	21
	6.	Parabolic subgroups	22
	7.	The simplicity theorem	23
Ap	pend	ix. Graphs	27
	1.	Definitions	27
	2.	The connected components of a graph	27
	3.	Forests and trees	29
Exe	ercises	s for §1	31
Exe	ercises	s for § 2.	44

CHAPTER V GROUPS GENERATED BY REFLECTIONS

§1.	Нур	erplanes, chambers and facets	61
	1.	Notations	61
	2.	Facets	62
	3.	Chambers	64
	4.	Walls and faces	65
	5.	Intersecting hyperplanes	67
	6.	Simplicial cones and simplices	68
§2.	Refl	ections	70
	1.	Pseudo-reflections	70
	2.	Reflections	71
	3.	Orthogonal reflections	73
	4.	Orthogonal reflections in a euclidean affine space	73
	5.	Complements on plane rotations	74
§3.	Gro	ups of displacements generated by reflections	76
	1.	Preliminary results	77
	2.	Relation with Coxeter systems	78
	3.	Fundamental domain, stabilisers	79
	4.	Coxeter matrix and Coxeter graph of W	81
	5.	Systems of vectors with negative scalar products	82
	6.	Finiteness theorems	84
	7.	Decomposition of the linear representation of W on T	86
	8.	Product decomposition of the affine space E	88
	9.	The structure of chambers	89
	10.	Special points	91
§4.	The	geometric representation of a Coxeter group	94
•	1.	The form associated to a Coxeter group	94
	2.	The plane $E_{\sigma,\sigma'}$ and the group generated by σ_{σ} and $\sigma_{\sigma'}$	95
	3.	The group and representation associated to a Coxeter	
		matrix	96
	4.	The contragredient representation	97
	5.	Proof of lemma 1	99
	6.	The fundamental domain of W in the union of the	
		chambers	101
	7.	Irreducibility of the geometric representation of a Coxeter	
		group	102
	8.	Finiteness criterion	103
	9.	The case in which B_M is positive and degenerate	105

CONTENTS

\S 5. Invariants in the symmetric algebra		
1. Poincaré series of graded algebras	108	
2. Invariants of a finite linear group: modular properties	110	
3. Invariants of a finite linear group: ring-theoretic properties	112	
4. Anti-invariant elements	117	
5. Complements	119	
§6. The Coxeter transformation	121	
1. Definition of Coxeter transformations	121	
2. Eigenvalues of a Coxeter transformation: exponents	122	
Appendix: Complements on linear representations	129	
Exercises for §2.	133	
Exercises for §3.	134	
Exercises for §4.	137	
Exercises for §5.	144	
Exercises for §6.	150	
CHAPTER VI ROOT SYSTEMS		

§1. Ro	ot systems	155
1.	Definition of a root system	155
2.	Direct sum of root systems	159
3.	Relation between two roots	160
4.	Reduced root systems	164
5.	Chambers and bases of root systems	166
6.	Positive roots	168
7.	Closed sets of roots	173
8.	Highest root	178
9.	Weights, radical weights	179
10.	Fundamental weights, dominant weights	180
11.	Coxeter transformations	182
12.	Canonical bilinear form	184
§2. Aff	ine Weyl group	186
1.	Affine Weyl group	186
2.	Weights and special weights	187
3.	The normaliser of W_a	188
4.	Application: order of the Weyl group	190
5.	Root systems and groups generated by reflections	191

CONTENTS	
----------	--

§3. E	xponential invariants	194
1.	The group algebra of a free abelian group	194
2.	Case of the group of weights: maximal terms	195
3.	Anti-invariant elements	196
4.	Invariant elements	199
§4. C	lassification of root systems	201
1.	Finite Coxeter groups	201
2.	Dynkin graphs	207
3.	Affine Weyl group and completed Dynkin graph	210
4.	Preliminaries to the construction of root systems	212
5.	Systems of type B_l $(l \ge 2)$	214
6 .	Systems of type C_l $(l \ge 2)$	210
1.	Systems of type A_l $(l \ge 1)$	217
0. Q	Systems of type D_l $(l \ge 5)$	220
10	System of type F_4	225
11	System of type E ₇	227
12	2. System of type E_6	229
13	B. System of type G_2	231
14	I. Irreducible non-reduced root systems	233
Exerci	ses for 81	235
Exerci	ises for $\S 2$.	240
Exerci	ises for §3.	241
Exerci	ises for §4.	242
HIST	ORICAL NOTE (Chapters IV, V and VI)	249
BIBL	IOGRAPHY	255
INDE	X OF NOTATION	259
INDE	EX OF TERMINOLOGY	261
PLAT	TE I. Systems of type $\mathbf{A}_l \ (l \geq 1)$	265
PLAT	TE II. Systems of type B_l $(l \ge 2)$	267
PLAT	TE III. Systems of type C_l $(l \ge 2)$	269
PLAT	TE IV. Systems of type $\mathbf{D}_l \ (l \geq 3)$	271
PLAT	TE V. System of type E_6	275
PLAT	TE VI. System of type E₇	279
PLAT	TE VII. System of type E ₈	283

х

PLATE VIII. System of type F ₄	287
PLATE IX. System of type G ₂	289
PLATE X. Irreducible systems of rank 2	291
Summary of the principal properties of root systems	293