Contents

Page

List of contributors ix				
Preface			xi	
Chapter	1	Introduction	1	
	1.1	The origins of geological structures	2	
	1.2	Division of geological structures	3	
	1.3	Structural geology	7	
	1.4	Types of crustal movements and tectogenesis	9	
Chapter	2	Examples of geological structures	13	
	I	The East African Rift System	16	
		(a) Outline of Geology	19	
		(b) Deep structure of Rift Valleys	23	
		(c) Break-up of the continental crust and the		
		development of the rift systems	27	
	II	The San Andreas Fault	31	
		The Great Californian Strike-slip fault	31	
		(a) Distribution and structure of the fault	32	
		(b) Fault movement in Tertiary and pre-Tertiary times	36	
		(c) Quaternary fault movements	40	
		(d) The San Andreas Fault as a plate boundary	41	
	Ш	Fault block movements in Shandong Province, China	44	
		(a) The position of the Shandong geological province		
		from the viewpoint of the tectonics of China	45	
		(b) Neotectonics of Tan-Lu fracture zone	47	
		(c) History of tectonic development prior to Tertiary	52	
		(d) Characteristics of the Shandong block movements	54	
	IV	Thrust faulting in the Canadian Rockies	56	
		(a) Location of the Canadian Rockies	57	
		(b) The McConnell Thrust and the structure of the		
		Canadian Rockies foothills	58	

		(c) Shape of thrust planes and associated folded	
		structures	60
		(d) Formation of the Canadian Rockies	64
	V	Nappe structures in the Swiss Alps	69
		(a) The Glarus Overthrust and Helvetic nappes	70
		(b) The formation of nappe structures	75
	VI	The Franciscan Formation and the Tectonic Mélange	82
		(a) The Franciscan Formation and metamorphism	84
		(b) The tectonic <i>mélange</i>	87
		(c) The Klamath-Sierra zone and Great Valley	
		Formation	92
	VII	The Canadian Shield and aulacogens	95
		(a) The geology of the northwest Canadian Shield	96
		(b) Coronation orogenic belt	97
		(c) Athapuscow aulacogen	99
		(d) Formation of aulacogens	101
	VIII	Salt domes in the Gulf Coast	106
	,	(a) Weeks Island salt dome	108
		(b) The process of salt dome development	112
		(c) Distribution of salt domes	116
	IX	Sudhury Astrobleme	120
	171	(a) The Sudbury Irruptive	121
		(b) Footwall rocks — shatter cones and brecciation	122
		(c) The Sudbury Irruptive and ore deposits	125
		(d) Hanging wall rocks — Onaping tuff	126
		(e) Interpretation based on the meteorite impact	120
		hypothesis	127
		(f) Impact craters and fossil impact craters	130
		(1) Impact claters and rossin impact claters	150
Chapter	3	Joints faults and stress fields	125
Chapter	31	Mechanical conditions of fractures	135
	32	Restoration of stress fields	130
	5.2	(a) The state of crustal stress and classification of	157
		(a) The state of crustal stress and classification of faults	130
		(b) Conjugate faults and principal axes of strass	137
		(c) Minor faults analysis	141
		(d) Problems of minor faults analysis	141
	33	The form of stress fields	143
	5.5	(a) Stress fields and fracturing due to horizontal	140
		compression	140
		(b) Stress fields and fracturing due to vortical	148
		displacement	1 40
			148

Contents			vii
	3.4	The origins and stress fields of regional joints	153
Chapter	4	Rock cleavage	161
	4.1	Types of cleavage	161
		(a) Fracture cleavage	163
		(b) Slaty cleavage	164
		(c) Crenulation cleavage	166
	4.2	The origins of slaty cleavage	169
		(a) Shearing hypothesis	170
		(b) Flattening hypothesis	171
		(c) Tectonic dewatering hypothesis	171
	4.3	Strain analysis and slaty cleavage	173
		(a) Direction of strain ellipsoids and slaty cleavage	174
		(b) Deformation plots	176
		(c) Deformation plots and the formative processes of	
		slaty cleavage	180
		(d) The progression of strain and period of slaty	
		cleavage formation	182
	4.4	Where slaty cleavage develops	184
		(a) Distribution of foliated structures in orogenic belts	184
		(b) Depth at the time of slaty cleavage development	184
		(c) Structural layer and slaty cleavage	187
Chapter	5	Folds and folding	191
	5.1	Fundamental types of folding	194
	5.2	Single-layer folds	197
		(a) Mechanical theory	197
		(b) The existence of the dominant wavelength	200
		(c) Strain distributions and internal structures	202
		(d) Variation in layer thickness	206
	5.3	Intrafolial folds	209
		(a) Internal buckling of anisotropic elastic bodies	210
		(b) Internal buckling of anisotropic viscous fluids	213
		(c) Finite element analysis of intrafolial folds	215
		(d) Intrafolial folds of Sambagawa crystalline schists	216
	5.4	Kink bands and conjugate folds	220
		(a) Geometry and strain distribution	221
		(b) Mechanisms of kinking	223
		(c) The ambient conditions for kinking and folding	226
	5.5	Folding of multilayered systems	226
	5.6	Three-dimensional analysis of folding	227
	5.7	Bending folds and drape folds	231
	5.8	Effects of gravity on buckle folding	235
	5.9	Diapir folds	238

Contents

Chapter	6	The flow of rocks	245
	6.1	Tectonic flow and its characteristics	245
	6.2	Creep and stress relaxation	248
	6.3	Tectonic stress fields and the growth of folds	251
	6.4	Mechanisms of boudin formation	255
Chapter	7	Fractures and bedrock	263
	7.1	Fractures and engineering geology	264
	7.2	Discrete surfaces in bedrock	265
	7.3	Changes in the physical properties of bedrock due to	
		fractures	266
	7.4	Methods of evaluating bedrock	274
		(a) Rock classification	276
		(b) Bedrock models	281
		(c) The stability of slopes	283
Appendi	x De	escriptive terms for geological structures	289
Index			301