INHALTSVERZEICHNIS

1.	EINLEITUNG1
2.	STAND DER ERKENNTNISSE3
2.1.	Leichtbau4
2.2.	Herstellungsprozess von Hybridstrukturen5
2.3.	Grundlagen der Fügetechnik Kleben7
2.3.1.	Einteilung der Klebstoffe nach dem Abbindemechanismus7
2.4.	Umformen von geklebten Hybridstrukturen11
2.4.1.	Konventionelles Tiefziehen11
2.4.2.	Die Ermittlung von Grenzziehverhältnissen12
2.5.	$\Delta \alpha$ -Problematik16
2.6.	Berechnung von Klebverbindungen19
2.6.1.	Mechanische Grundlagen zur Berechnung von Klebverbindungen20
<i>2.6.2</i> .	Theorie der Materialverhalten22
<i>2.6.3</i> .	Viskoelastisches Materialgesetz mit Berücksichtigung des Aushärtevorgangs23
2.6.4.	Viskoplastisches Materialgesetz für ausgehärtete Klebschichten23
2.6.5.	Berechnung von Klebverbindungen mittels der Finite-Elemente-Methode25
3.	ZIEL UND VORGEHENSWEISE27
4.	VERSUCHSEINRICHTUNGEN UND PRÜFVERFAHREN29
4.1.	Zugprüfeinrichtung29
4.2.	Hydraulische Presse für die Tiefziehversuche30
4.3.	Optische Verformungsmessung nach dem Grauwertkorrelationsverfahren30
4.4.	Schlittenprüfstand für Crashversuche32
4.5.	CAE-System ABAQUS33
5.	VERSUCHSWERKSTOFFE UND MATERIALEIGENSCHAFTEN
	34
5.1.	
	Verwandete Versuchswerkstotte
511	Verwendete Versuchswerkstoffe
	Klebstoffe34
5.1.1. 5.1.2. 5.2.	Verwendete Versuchswerkstoffe

0.	BLANKS39
6.1.	Verwendete Werkstoffe und ihre Grenzziehverhältnisse
6.2.	Probenformen und -herstellung40
6.3.	Δα-Problematik bei der Probenherstellung41
6.4.	Ergebnisse der Tiefziehversuche
<i>6.4.1.</i>	Werkstoffkombination A: DC05 (0,8 mm) - AA6016 (1,15 mm) - Überlappstoß43
6.4.2.	Werkstoffkombination B2: H320LA (1 mm) – AA6016 (1,15) – Überlappstoß46
<i>6.4.3</i> .	Werkstoffkombination B2: H320LA (1 mm) – AA6016 (1,15) – vollflächige Klebung46
6.4.4.	Überblick über die Ergebnisse der Umformversuche51
6.5.	Numerische Simulation des Tiefziehprozesses
6.5.1.	Berechnete Kraft-Stempelweg-Verläufe53
<i>6.5.2.</i>	Beanspruchung der Klebschicht54
6.6.	Zusammenfassung der Ergebnisse der Tiefziehversuche57
7.	BEPLANKUNG VON PROFILRAHMENSTRUKTUREN59
7.1.	Δα-Problematik bei beplankten Profilrahmenstrukturen60
7.2.	Fügeteilwerkstoffe und Nietelemente63
7.3.	Probenformen und -herstellung64
7.4.	Versuchsaufbau und -durchführung66
7.5.	Experimentelle Ergebnisse der Verformungsmessungen67
7.5.1.	Elementar geklebter Schubfelddemonstrator67
7.5.2.	Hybrid gefügte Schubfelddemonstratoren69
7.6.	Verformungssimulation mittels der Finite-Elemente-Methode73
7.6.1.	Finite-Elemente-Modell des Demonstratorbauteils73
7.6.2.	Verformungssimulation des elementar geklebten Bauteils75
<i>7.6.3</i> .	Ergebnisse der Verformungsanalyse am hybridgefügten Bauteil78
7.7.	Verifikation der Ergebnisse aus der numerischen Simulation80
7.7.1.	Linear-elastisches Werkstoffverhalten von Aluminium und Stahl81
7.7.2.	Einbeziehung eines elastisch-plastisches Materialgesetzes für die Fügeteile und
	die Fügeelemente83
7.7.3.	Anpassung der Nietgeometrie84
7.8.	Zusammenfassung der Analyse des Demonstratorbauteils85
7.8.1.	Vergleich elementar geklebtes und hybridgefügetes Bauteil85
7.8.2.	Einflüsse charakteristischer Parameter und Konstruktionshinweise88

8.2. <i>8.2.</i> 1.	Crash-Prüfung von geklebten Tailored Hybrid Blanks Prüfgeschwindigkeit 3 m/s	
	Prüfgeschwindigkeit 4 m/s	
9.	ZUSAMMENFASSUNG	95
9.	ZUSAMMENFASSUNG	95
	LITERATURVERZEICHNIS	

CRASHVERSUCHE......89

Crash-Prüfung von Referenzproben aus Aluminium......91

8. 8.1.