CONTENTS

PREFACE INTRODUCTION	xiii 1
APPLICATION OF VOLCANOLOGICAL OBSERVATIONS TO GEOTHERMAL EXPLORATION	2
Step 1. Evaluation of Available Information About the Area to be Studied	3
Step 2. Field and Laboratory Investigations	<i>J</i>
Step 3. Detailed Field and Laboratory Studies: Geology and Volcanology	4
BASIC APPROACH	5
CHAPTER 1. RECENT PRACTICAL ADVANCES IN VOLCANOLOGY	7
QUANTITATIVE METHODOLOGY AND VOLCANOLOGY	8
Statistical Methods	8
Physical Processes	9
Chemical Processes	10
MAGMA GENERATION, ACCUMULATION AND DIFFERENTIATION IN CHAMBERS, AND ERUPTIONS	11
Tectonic Setting and Origin of Magmas	11
Magma Chambers	13
EXPLOSIVE ERUPTIONS AND QUANTITATIVE MODELS	18
Pyroclastic Fallout	21
Pyroclastic Flows	22
Pyroclastic Surge	24
HYDROVOLCANISM	26
Environments of Hydrovolcanism	30
Nature of Hydrovolcanic Phenomena	30
Hydrovolcanic Products	33
Hydrovolcanic Cycles and Geothermal Energy	33
CHAPTER 2. PYROCLASTIC ROCKS AS A TOOL TO EVALUATE GEOTHERMAL SYSTEMS	39
EXPLOSIVE ERUPTIONS AND GEOTHERMAL ENERGY SOURCES	40
SUBSURFACE THERMAL ENERGY ESTIMATES	42
Pyroclastic Rock Volumes	45
Heat-Flow Calculation	46
Hot Dry Rock Geothermal Energy	50
WATER/MAGMA (HYDROVOLCANIC) INTERACTION: FIELD AND LABORATORY ASPECTS	50
Basic Concept	52
Wet and Dry Facies Relationships	54
Polygenetic Volcanoes and Calderas	57
Petrography of Hydrovolcanic Tephra Constituents	62
EXPERIMENTAL AND THEORETICAL ASPECTS OF HYDROVOLCANISM	69
Results from Experiments	69
Predictions Based on Theory	74

GEOTHERMAL IMPORTANCE OF HYDROVOLCANISM	82
Tephra Stratigraphy: Geometry and Depth of Reservoir Rocks	83
Lithic Ejecta: An Important Geothermal Prospecting Tool	89
VOLCANIC HYDROFRACTURES	95
Theoretical Background	97
Size of Hydraulic Fractures	105
Field Examples	111
Summary: Volcanological Interpretation	112
CHAPTER 3. SURFACE MANIFESTATIONS OF GEOTHERMAL SYSTEMS	119
HOT SPRINGS AND GEYSERS	120
SILICEOUS SINTER DEPOSITS	121
Single-Stage or Primary Sinters	121
Multiple-Stage Sinters	122
Form and Extent of Siliceous Sinter Deposits	122
Travertine	123
OLDER SPRING DEPOSITS	125
HYDROTHERMAL (PHREATIC) CRATERS AND DEPOSITS	125
HYDROTHERMAL ALTERATION	129
Characterization and Interpretation	130
Mapping Alteration Mineralogy	135
CHAPTER 4. CALDERAS AND THEIR GEOTHERMAL SYSTEMS	141
Intrusion	142
ERUPTION PROCESSES THAT LEAD TO CALDERA COLLAPSE	146
VOLCANISM, STRUCTURAL DEFORMATION, AND SEDIMENTATION FOLLOWING	
CALDERA COLLAPSE	150
CALDERA STRUCTURE AND SHAPE	156
GEOTHERMAL SYSTEMS IN CALDERAS	159
LATIUM VOLCANOES OF ITALY	161
Latera Volcanic Complex	161
Baccano Caldera	163
THE PHLEGREAN FIELDS IN ITALY	166
TAUPO VOLCANIC ZONE IN NEW ZEALAND	170
Geologic Setting	170
Maroa Volcanic Center and Wairakei Geothermal Field	171
CHAPTER 5. SILICIC DOMES: HEAT FLOW AROUND SMALL, EVOLVED	
MAGMA BODIES	177
SILICIC DOMES AND EXTRUSION OF VISCOUS LAVA	178
Common Geologic Settings	178
Evolution and Internal Structure	178
TEPHRA DEPOSITS ASSOCIATED WITH SILICIC DOMES	180
Initial Plinian and Phreatomagmatic Eruptions	182
Vulcanian Eruptive Cycles	183

Peléean and Merapian Dome Destruction	185
Phreatic Eruptions	185
HYDROTHERMAL SYSTEMS ASSOCIATED WITH DOMES	187
Role of Water in Dome Eruptions	187
Geothermal Systems Models	188
Structural Influences	192
COSO CALIFORNIA GEOTHERMAL FIELD	194
Geologic Setting	194
Hydrogeochemistry	200
Geophysical Character	201
Volcanological Interpretations	204
USU VOLCANO IN JAPAN	205
Geology	207
Geophysical Properties	208
Hydrogeochemistry	208
TERRE BLANCHE-BELFOND IN ST. LUCIA	213
Geology	213
Geophysical Properties	216
Hydrogeochemistry	216
Volcanological Interpretations	218
CHAPTER 6. GEOTHERMAL SYSTEMS ASSOCIATED WITH BASALTIC VOLCANOES	225
SCORIA CONES AND TUFF RINGS	226
SHIELD VOLCANOES	230
LAVA LAKES AND MAGMA ENERGY—RESOURCES FOR THE FUTURE	231
KILAUEA VOLCANO AND KAPOHO GEOTHERMAL AREA OF HAWAII	231
Migration of Magma and Evaluation of Thermal Sources	234
Hydrothermal Systems at Kilauea Caldera and Along Its East Rift Zone	239
THREE GEOTHERMAL SYSTEMS IN ICELAND: KRAFLA, SURTSEY, AND HEIMAEY VOLCANOES	246
Migration of Magma and Dike Formation	248
Hydrothermal Reservoirs	250
Geothermal Potential of Several Small Basaltic Islands	252
RÉUNION ISLAND IN THE INDIAN OCEAN	255
CHAPTER 7. GEOTHERMAL SYSTEMS IN MATURING COMPOSITE CONES	261
DISTRIBUTIONS, VOLUMES, AND COMPOSITIONS	262
Distribution of Composite Cones in Volcanic Arcs	262
Volcanic Eruption Rates and Relative Volumes for Magma Types in	
Composite Cones of Volcanic Arcs	265
Inferred Intrusive Volumes and Their Depths Below Composite Cones	268
ERUPTION PHENOMENA AND DEPOSITS AT COMPOSITE CONES	268
Immature Stage	269
Submature Stage	273
Mature Stage	275

MODELS OF COMPOSITE CONES	279
Models Based on Mapping and Mining of Porphyry Copper Deposits in	
Deeply Eroded Composite Cones	279
Well-Mapped Examples of Eroded Composite Cones	281
A Facies Model	284
A Model Based on Heat Flow Measurements	284
COMPOSITE CONE GEOTHERMAL SYSTEMS	284
Proven (Drilled) Geothermal Fields	285
Composite Cones with Possible Geothermal Potential—As Yet Unproven by Deep Drilling	290
Discussion	292
APPENDIX A: FIELD METHODS IN VOLCANIC REGIONS	295
PREPARATION FOR FIELD WORK	295
Definition of the Problem	295
Library Research	296
Collecting Geographic Materials	296
ESTABLISHING THE STRATIGRAPHIC FRAMEWORK OF A VOLCANIC FIELD	297
Approach	300
Volcanic Rock Units	302
Characteristics of Pyroclastic and Epiclastic Rocks	303
Lava Flows and Domes	306
Correlation of Volcanic Rock Units	309
LITHOLOGY AND STRUCTURE	309
Lava Samples	310
Pyroclastic Samples	312
Structural Analysis	321
THE MAP	322
Scale and Graphic Detail	325
Thematic Mapping	326
Cross Sections	329
THREE-DIMENSIONAL MODEL FROM MAPS, CROSS SECTIONS, AND DRILLHOLE DATA	333
RECOMMENDATIONS AND JUSTIFICATION FOR DRILLING	334
APPENDIX B: VOLCANIC ROCK CLASSIFICATIONS AND DATA	337
CLASSIFICATION METHODS	337
Chemical Classification	337
Textural Classification	338
DENSITY	339
POROSITY AND PERMEABILITY	340
GEOPHYSICAL PROPERTIES	342
APPENDIX C: NOTATION	347

APPENDIX D: CONVERSION FACTORS, STEAM PROPERTIES, AND CONVERSION OF	
GEOTHERMAL HEAT TO ELECTRICITY	353
CONVERSION FACTORS	353
THERMODYNAMIC PROPERTIES OF STEAM	353
CONVERSION OF GEOTHERMAL HEAT TO ELECTRICITY	354
APPENDIX E: HEAT FLOW (TWO-DIMENSIONAL DIFFUSION CODE)	361
SOURCE CODE LISTING	362
APPENDIX F: CORES AND DRILL CUTTINGS: GEOTHERMAL WELL LOGS	369
CORES	369
DRILL CUTTINGS	370
GEOTHERMAL WELL LOGS	37
APPENDIX G: GLOSSARY	373
REFERENCES	385
INDEX	419