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Chapter 2
Mouse Models of Intestinal Cancer

Erin M. Perchiniak and Joanna Groden

Introduction 

Intestinal cancers are a category of heterogeneous tumors that occur sporadically or 
through inherited susceptibility, each characterized by genetic alterations affecting a 
number of molecular pathways. As a result of this complexity, numerous genetically 
engineered mice (GEM) have been generated to model different genetic,  morphologic, 
or clinical features of intestinal cancer. Mouse models of intestinal cancer can be 
broadly divided into six groups based on the underlying signaling pathway disrupted 
or by the means with which tumors were induced: Wnt-related GEM; GEM associated 
with alterations in TGF-beta (β) signaling; mismatch repair-deficient GEM; immune-
deficient mice; carcinogen-treated mice; and others that do not neatly fit into the 
aforementioned categories. Although differences have been noted in lesions arising 
in these broadly grouped genetic and other models, some characteristics are shared. 
Adenomas are the most common lesion in mouse models of intestinal cancer. Unlike 
humans, lesions can be present throughout the intestinal tract, with no  predilection 
for the colon. Invasion and metastasis occur rarely. This chapter will summarize the 
findings from most of the available mouse models of intestinal cancer.

GEM and the Wnt Signaling Pathway

Min/+ and Related Mice

The APC gene was initially identified by positional cloning as the disease gene 
for familial adenomatous polyposis coli (FAP) and was subsequently found to 
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be mutated in the majority of sporadic colorectal tumors (Groden et al. 1991; 
Kinzler et al. 1991). As a result of these initial findings, research has focused on 
 understanding the cellular pathways in which APC participates and how deregulation 
of these pathways can lead to tumorigenesis. Although APC has many roles in the 
cell, regulation of the protein β-catenin is the primary function. APC is part of a 
protein complex that phosphorylates β-catenin, marking it for ubiquitination and 
proteolytic degradation. In the absence of APC or in the presence of a Wnt signal, 
β-catenin is stabilized and shuttled to the nucleus where it can transcriptionally alter 
the expression of downstream Wnt target genes. Therefore, when APC is disabled 
by mutations, the Wnt signaling pathway is constitutively activated, allowing for 
uncontrolled growth and tumor progression. Many APC mutants have been identified 
in persons with FAP, in whom genotype/phenotype correlations are well known 
(reviewed by Nieuwenhuis and Vasen 2007). APC mutations in the first or last third 
of the gene are associated with an attenuated polyposis, characterized by late onset 
and a small number of adenomas. Conversely, mutations in the central region of the 
gene correlate with a severe phenotype with thousands of adenomas developing at a 
young age. To investigate these observations more closely and to gain insight into the 
mechanism of disease onset, several mutant Apc mouse models have been created.

Perhaps the most widely used GEM model of gastrointestinal (GI) tumorigenesis 
is the ApcMin/+ mouse. Thus, it has become the basis of comparison for other GI 
cancer mouse models (Moser et al. 1990). The ApcMin (multiple intestinal neoplasia) 
allele carries an ethylnitrosourea (ENU)-induced nonsense mutation at codon 850 
(Su et al. 1992), which leads to embryonic lethality in homozygote animals. Most 
studies use the heterozygote mice, ApcMin/+, which typically live 4 months (Moser 
et al. 1990). Mice carrying the ApcMin allele on the C57BL/6 background develop 
an average of 24 polyps per mouse in the small intestine and five per mouse in 
the colon by 4 months of age. Most polyps are adenomas, with none progressing 
to invasive adenocarcinoma and, as expected for adenomas, tumors in the ApcMin/+ 
have been found not to metastasize.

Given the advances in gene-knockout technologies, several other Apc mutant 
mice have been created. The importance of their study stems from the knowledge 
that several mutations have been detected within the APC gene in human tumor 
samples and in persons with FAP, which may underlie variations in disease progres-
sion among patients; the results from these subsequent mouse models indicate that, 
indeed, not all Apc mutations are equivalent. The precise location and the type of 
mutation within Apc dictate the degree of tumor susceptibility, which is probably 
the result of the multifunctional nature of Apc and its contribution to various 
cellular pathways.

Apc716/+ mice harbor a truncating mutation at codon 716 and, like ApcMin/+ mice, 
develop polyps mainly in the small intestine (Oshima et al. 1995); they develop an 
average of 300 polyps as early as 3 weeks of age (Oshima et al. 1995), and typi-
cally have a reduced lifespan compared to ApcMin/+ mice, even on the same C57BL /6 
background. Apc1309/+ mice have a truncating mutation at codon 1309 (Quesada 
et al. 1998). These mice typically develop an average of 34 adenomas by 14 weeks 
of age, a slightly higher incidence of polyp formation than the ApcMin/+ mouse, and 
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a lower incidence than the Apc716/+ mouse. Again, these polyps are predominantly 
found in the small intestine. This GEM is particularly interesting because codon 
1309 is the most frequently mutated residue in persons with FAP with severe poly-
posis (Nagase and Nakamura 1993). A 5-base-pair deletion results in truncation of 
APC three codons downstream from the mutation.

Apc1638/+ mice carry an allele with a mutation at codon 1638 resulting in trunca-
tion of Apc; these mice also develop polyps mainly in the small intestine (Fodde 
et al. 1994; Oshima et al. 1995). However, Apc1638/+ mice form only 3–5 tumors by 
3.5 months of age and typically live 1 year (Yang et al. 1997). A modification to the 
Apc1638 allele design was engineered to produce a stable Apc protein (Smits et al. 
1999). This allele, Apc1638T, still encodes some of the β-catenin-binding motifs but 
lacks the C-terminal portion of Apc necessary for its interaction with other proteins 
important for growth control. On a mixed background, B6/129Ola, homozygos-
ity for the Apc1638T mutation does not result in embryonic lethality but leads to a 
number of phenotypic abnormalities in adult animals, including growth retarda-
tion and nipple-associated cysts. The same mutation on a B6 background leads to 
reduced postnatal survival. Heterozygous Apc1638T mice are normal.

Given the predilection for intestinal tumors to form in the mouse models, 
conditional Apc mutant mice have been developed to investigate the initiation 
stage of intestinal adenoma formation (Shibata et al. 1997). Apc580/+ mutant mice, 
on a mixed 129/BL6 background, carry an allele with loxP (or flox) sites flanking 
exon 14. Colonic introduction of a recombinant adenovirus expressing Cre recom-
binase, driven by the SR-alpha promoter into Apc580/+ mice, induces a frameshift 
mutation at codon 580. Over 80% of homozygous animals (20 of 24 animals) have an 
average of 6.7 colonic adenomas 4 weeks after infection. No tumors were detected 
in either heterozygous or wild-type animals. Five of six homozygous mutants 
allowed to live after adenoviral infection survived over 1 year. Analysis of these 
animals showed invasion into the submucosal layer by tumor cells and hence pro-
gression to adenocarcinoma. Recent studies have used colon-specific promoters to 
drive Cre expression and generate colon tumors in the mouse, rather than the small 
intestinal distributions seen in the more established models.

Hypomorphic Apc mice were created in a study by Li et al. whereby the expres-
sion level of Apc was reduced to 10–20% of the wild-type Apc (Li et al. 2005). 
Polyp formation was reduced compared to the Apc716/+ mice. These results argue 
that there is a threshold level (15% of wild type) of Apc expression that is required 
for proper growth control.

More recent studies have focused on conditionally inactivating Apc in order to 
understand the precise mechanism by which Wnt activation leads to polyps. Two 
mouse models have been generated, both making use of the loxP system. Apc is 
modified by an inducible Cyp1A-Cre transgene (Sansom et al. 2003) in one model, 
whereas the other uses a tamoxifen-regulated intestinal-specific Villin-CreER 
transgene (Andreu et al. 2005). Both studies reported that inactivation of Apc led 
to the rapid translocation of β-catenin to the nucleus and subsequent changes in 
the appearance of enterocytes and intestinal crypts. Following Apc loss, many 
of the epithelial cells along the crypt-villus axis enter S-phase. These studies 
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establish that a single event, loss of Apc, is enough to promote early phenotypic 
changes in the crypt.

b-Catenin Transgenic Mice

β-Catenin is a multifunctional protein component of the Wnt signal transduction 
pathway (Sheng et al. 1998). It is also a mediator of cell adhesion through its inter-
action with cadherins. It is known that β-catenin rapidly translocates to the nucleus 
upon loss of APC, resulting in transcriptional alteration of downstream target genes 
involved with proliferation, apoptosis, and cell-cycle regulation. Therefore, over-
expressed β-catenin is considered oncogenic, resulting from either a nonfunctional 
APC gene or a gain of function mutation within β-catenin. The finding of mutations 
in the β-catenin gene (CTNNB1) in human colon cancer cell lines, with no detect-
able mutations in APC, has led to the hypothesis that β-catenin acts as an oncogene 
in the development of intestinal neoplasia (Iwao et al. 1998; Morin et al. 1997; 
Sparks et al. 1998). Several groups have investigated the role of activated β-catenin 
using in vivo mouse models.

Wong et al. designed a transgenic mouse expressing a human β-catenin N-terminal 
truncation mutant (N89β-catenin) in the intestine driven by the fatty acid-binding 
protein gene (Fabp1) promoter (Wong et al. 1998). The absence of GSK-3β phos-
phorylation sites, normally targeting degradation of β-catenin, was associated with 
a longer half-life than wild-type β-catenin in cell culture studies (Aberle et al. 1997; 
Cadigan and Nusse 1997; Miller and Moon 1996; Munemitsu et al. 1996; Yost et al. 
1996). The deletion of these amino acids did not affect the ability of β-catenin to 
interact with E-cadherin, α-catenin, or Tcf (Wong et al. 1998). Although there 
were some changes in the architecture of the villi and an increase in the rate of cell 
division within undifferentiated cells in the crypts of Liberkühn, no dysplasia was 
detected in the transgenic mice.

Romagnolo et al. generated a similar β-catenin transgenic mouse, but had 
 dramatically different results (Romagnolo et al. 1999). This transgenic mouse 
expressed activated β-catenin in the epithelial cells of the intestine using a trans-
gene with an N-terminal truncation, N131β-catenin, lacking both the GSK-3β 
phosphorylation site, important for protein stabilization, and the α-catenin-binding 
site, necessary for adhesive properties of β-catenin (Barth et al. 1997; Hulsken et al. 
1994). A  calbindin-D9K promoter and its regulatory sequences, active in differen-
tiated epithelial cells of the villi and the kidney (Colnot et al. 1998; Romagnolo 
et al. 1996), and the enhancer of the adolase B gene were used to drive expression. 
Overexpression of N131β-catenin resulted in small intestine adenomas by 3–4 weeks 
of age. The intestines were characterized by multifocal dysplastic lesions and a 3- to 
4-fold higher number of apoptotic cells than in nontransgenic mice. Further analysis 
of these animals was inhibited by mortality from polycystic kidney disease.

A third β-catenin GEM was generated in which exon 3 could be deleted by 
inducible homologous recombination using loxP sites (Harada et al. 1999). The loss 
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of exon 3 does not alter the frame of the RNA. In this model, nearly 3,000  adenomas 
develop by 3 weeks of age, primarily in the duodenum and jejunum and with little 
involvement of the ileum, cecum, or colon. Fabp1 regulatory regions were used 
to express Cre, resulting in a mutant β-catenin driven by its own enhancer and 
promoter. Differences in promoters, transgene copy numbers or locations, mouse 
strains, and or different types of dominant mutations may explain the dramatic 
differences in these three mouse models. Each, however, underscores the importance 
of the Wnt signaling pathway in mouse GI tumorigenesis.

Genes that Modify the Wnt Pathway

Cyclo-oxygenases (Cox) 1 and 2 are the key enzymes in prostanoid production and 
are the targets of nonsteroidal anti-inflammatory drugs (NSAIDs) and aspirin (Vane 
1971, 1994). Both Cox-1 and Cox-2 enzymes convert arachidonic acid to pros-
taglandin G2 and then to prostaglandin H2 (DeWitt and Smith 1988; Hemler and 
Lands 1976; Miyamoto et al. 1976). Cox-1 is constitutively expressed in several 
mammalian tissues, whereas the distribution of Cox-2 expression is restricted 
to  inflammatory cells such as monocytes and macrophages upon stimulation by 
cytokines, mitogens, serum, and endotoxins (Lee et al. 1992; Maier et al. 1990; 
O’Banion et al. 1992; O’Neill and Ford-Hutchinson 1993) Cyclo-oxygenase-2 
(Cox-2) is expressed at early stages of adenoma formation, suggesting its impor-
tance as a therapeutic target. Cox-1 seems to work with Cox-2 in adenoma develop-
ment by producing prostaglandin E2 (PGE

2
) and stimulating angiogenesis (Takeda 

et al. 2003). Introduction of a Cox-2 deletion onto the ApcMin/+ background dra-
matically decreases tumor number (Oshima et al. 1996). The combination of Cox-2 
deletion with the Apc716/+ mutation also leads to a dramatic decrease in the number 
and size of tumors. Not surprisingly, introduction of a Cox-1 mutation to the ApcMin/+ 
mouse reduces the number and size of tumors to about 80% of the reduction seen 
in Cox-2;Apc mutant mice (Chulada et al. 2000). As might be predicted, treatment 
of ApcMin/+ mice with PGE

2
 increases the number and size of intestinal adenomas 

(Wang et al. 2004). Clinical trials are ongoing to investigate Cox-2 inhibitors in 
FAP (Higuchi et al. 2003; Steinbach et al. 2000). See also Chap. 5.

To probe the arachidonic acid cascade for its contribution to intestinal tumori-
genesis, several other compound mice were developed. Cytosolic phospholipase A

2
 

(cPLA
2
) is one of the key enzymes responsible for cleavage of arachidonic acid, 

a substrate of Cox, from membrane phospholipids. Knockout of cPla
2
 in Apc716/+ 

mice reduces tumor number (Takaku et al. 2000). Additional studies have investi-
gated the role of the G-protein coupled receptor Ep

2
, which binds PGE

2
, in tumor 

formation in ApcMin/+ mice. Double heterozygotes displayed a marked reduction of 
tumor number (Sonoshita et al. 2001). PGE

2
 indirectly transactivates peroxisome-

proliferator activity receptor delta (PPARδ) through PI3K/Akt signaling. Deletion 
of PPARd in ApcMin/+ mice treated with PGE

2
 negated the increase of intestinal 

adenomas found with treatment of PGE
2
 alone (Wang et al. 2004).
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Methylation contributes to the silencing of many genes which, in turn, leads 
to deleterious phenotypic changes depending on which genes have been affected. 
DNA methyltransferase 1 (DNMT1) is one of the enzymes responsible for methyl-
ating cytidine residues within genes. Mutations in the Dnmt1 gene, in combination 
with an enzyme inhibitor, reduced the tumor number in ApcMin/+ mice from one 
hundred to two or less (Laird et al. 1995). Mutation in the Mbd2 gene, encoding a 
methyl-CpG-binding repressor, also reduced tumor numbers in ApcMin/+ mice (Laird 
et al. 1995; Sansom et al. 2003). These results suggest a role for methylation in the 
development of intestinal polyposis.

Other modifier genes include the reqQ-like DNA helicase gene, BLM, which, 
when mutated, is responsible for the development of Bloom syndrome. When 
Blm heterozygous mice were bred to ApcMin/+ mice, an increase in adenomas was 
observed as well as a change in the degree of tumor dysplasia (Goss et al. 2002; 
Luo et al. 2000). Mutation of the gene encoding the matrix metalloproteinases 
matrilysin (Mmp7), implicated in cancer invasion and metastasis, also reduces 
tumor number in ApcMin/+ mice (Wilson et al. 1997).

GEM and the TGFb Signaling Pathway

TGFb1−/− and Related Mice

The transforming growth factor β (TGFβ) pathway plays an important role in both 
human and murine colon cancer. TGFβ controls cell growth, regulates epithelial 
cell differentiation and cell matrix interaction, and protects the epithelium from 
genetic damage caused by inflammatory cells (Brandes et al. 1991; Kulkarni et al. 
1993; Roberts et al. 1992; Shull et al. 1992; Wahl et al. 1987). The multifunctional 
nature of the TGFβ family suggests several mechanisms by which defects in TGFβ 
signaling can lead to initiation, promotion, or progression of cancer. This hypoth-
esis is supported by evidence from tumor-derived human colon cancer cell lines 
which are frequently resistant to the growth-inhibitory effects of TGFβ1 (Manning 
et al. 1991; Mulder et al. 1988). Mutations have been detected in TGFbR2 in 
both sporadic and inherited colon cancers (Markowitz et al. 1995; Parsons et al. 
1995). Additionally, inactivating mutations in SMAD2 and SMAD4, two members 
of the family of intracellular proteins responsible for transducing signals from the 
activated TGFβ receptors, are present in many human colon cancers (Eppert et al. 
1996; Takagi et al. 1996; Thiagalingam et al. 1996).

Inactivation of Tgfβ1 in mice results in autoimmune disease and death before 
1 month of age. In order to study the role of Tgfβ1 in the development and progres-
sion of GI cancer, the Tgfb1−/− mouse strain was crossed onto the immunodeficient 
Rag2−/− (Engle et al. 1999). Tgfβ1 deficiency (+/− or −/−) on the Rag2−/− back-
ground leads to cecal and colonic neoplasms (Engle et al. 1999). A marked increase 
in tumor incidence and severity was observed in the Tgfb1−/− mice: adenomas are 
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detectable at 2 months of age and carcinomas are detectable at 3–6 months with 
100% penetrance. The carcinomas show no mutations of Apc, Ras, or Ctnnb1, 
which suggests that the tumor-suppressive function of Tgfβ is independent of other 
known signaling pathways disrupted in intestinal cancers. Notably, many of the 
tumors have a mucinous histopathology.

Smad−/− Mice

Signaling by Tgfβ family ligands is mediated by the Smad family of intracellular 
proteins (Graff et al. 1996). The Smad proteins are the core of the Tgfβ pathway 
through their translation of cellular signals into responses. There are eight Smad 
proteins encoded by the human and mouse genomes, five of which act as substrates 
for the Tgfβ family of receptors (Massague 1998). Smads 1, 2, 3, 5, and 8 are 
commonly referred to as receptor-regulated Smads (RSmads). Smad4, also called 
Co-Smad, serves as a common partner for all Smads. Smads 6 and 7 are inhibitory 
and serve as decoys by interfering with Smad-receptor and Smad-Smad interactions. 
Smads undergo a continuous nuclear-cytoplasmic shuttling cycle. Phosphorylation 
leads to nuclear accumulation by destabilizing the RSmad interaction with cyto-
plasmic anchors and increases their affinity for nuclear factors (Shi and Massague 
2003; Xu and Massague 2004). This then allows Smads to transcriptionally regulate 
Tgfβ downstream targets. Dephosphorylation has the opposite effect, sequestering 
Smads to the cytoplasm (Inman et al. 2002). Because Tgfβ signaling affects cell 
division, differentiation, migration, adhesion, organization, and death, and because 
Smads are the translators of these signals, Smad deregulation could have many 
deleterious cellular affects. Therefore, several Smad GEM models have been gene-
rated, some of which have developed intestinal tract tumors.

Smad2 is 91% homologous to Smad3; however, it differs biologically. Unlike 
Smad3 and 4, Smad2 does not bind directly to DNA and has a unique thirty amino 
acid region absent from other Smad proteins (Dennler et al. 1998; Jonk et al. 
1998; Kim et al. 1997; Labbe et al. 1998; Yingling et al. 1997; Zawel et al. 1998). 
Pertinent to human GI tumors, SMAD2 is the only RSMAD for which mutations 
have been associated with colorectal cancer (Eppert et al. 1996). To investigate 
whether Smad2 can act as a tumor suppressor, knockout mice were generated. 
Homozygous deletion of Smad2 results in embryonic lethality at day 8.5 (Heyer 
et al. 1999; Nomura and Li 1998; Waldrip et al. 1998; Weinstein et al. 1998). 
Heterozygous mice (Smad2+/−) had no abnormalities when aged to 1.5 years. 
Hamamoto et al. generated double heterozygous mice that carried Apc and Smad2 
null alleles (Hamamoto et al. 2002). Inactivation of Smad2 in heterozygous Apc 
mutant mice did not change the total number of intestinal tumors but decreased 
the time to death from intestinal obstruction due to extremely large tumors. 
Additionally, these mice developed multiple invasive cancers not observed in Apc 
heterozygotes. These results suggest that deletion of Smad2 alone does not initiate 
tumor formation, but accelerates progression of tumors initiated by loss of Apc.



34 E.M. Perchiniak and J. Groden

Unlike other Tgfβ-family null mice, Smad3 null mice are viable and reasonably 
healthy. They develop intestinal adenomas that sometimes progress to adenocarci-
noma (Zhu et al. 1998). The Smad3 mutant allele was generated by homologous 
recombination and established in both 129/Sv and 129/Sv C57BL/6 mixed back-
ground mice. Most tumors are mucinous. Metastatic spread (uncommon in mouse 
models) was detected in a small number of animals. There was great variability in 
the time-course of disease, but tumors were smaller and less aggressive in mixed 
background mice. These in vivo studies have defined a new role for Smad3 as a 
tumor suppressor protein in the intestine. Smad3 mutant mice display many of the 
histopathological stages observed in human colon cancer progression; to date, no 
SMAD3 mutations have been detected in human colorectal cancers.

SMAD4 was initially cloned as a tumor suppressor that is mutated in more than 
50% of human pancreatic cancers (Hahn et al. 1996). SMAD4 is also mutated in 
more than 30% of human sporadic colon cancers; germline mutations are associ-
ated with familial juvenile polyposis (Friedl et al. 1999; Nagatake et al. 1996). 
Smad4 null mice die at embryonic day 6.5; therefore, Smad4+/− mice are often 
used for tumorigenesis studies (Sirard et al. 1998; Yang et al. 1998). Polyps can be 
detected in the fundus and antrum of the stomach of Smad4+/− mice; polyps found 
in the antrum can develop into adenocarcinoma with aging (Xu et al. 2000). Polyps 
can also be found in the duodenum and cecum, albeit at a lower frequency. From 
these studies, it seems reasonable to infer that Smad4 is particularly important for 
tumor suppression in the stomach. Smad4+/− mice have also been bred with Apc+/− 
mice; double heterozygotes develop intestinal adenocarcinomas that lack wild-type 
alleles at both loci (Takaku et al. 1998).

GEM and DNA Mismatch Repair

Individuals with Lynch Syndrome (see Chap. 6) carry heterozygous germline muta-
tions in one of six DNA mismatch repair (MMR) genes. Tumors that arise have 
typically lost the wild-type copy of the gene through somatic events and are char-
acterized by microsatellite instability (MSI). The mammalian MMR system detects 
and repairs base substitution or small nucleotide insertion/deletion mutations, 
sends apoptotic signals in response to DNA damage, and suppresses incorrect 
homologous recombination events. In eukaryotes, initiation of the repair process 
requires three different MutS yeast homologs: MSH2, MSH3, and MSH6. MSH2 
and MSH6 form a heterodimeric complex that initiates base-base mispairing as 
well as single base insertion/deletion mispairs. The MSH2-MSH3 heterodimeric 
complex repairs larger insertion/deletion mispairs of 2–4 bases. Both complexes 
require interaction with eukaryotic MutL homologs to activate subsequent repair 
events. The four MutL homologs are: MLH1, PMS1, PMS2, and MLH3. Three 
heterodimeric complexes form: MLH1–PMS2 to provide the primary function for 
mitotic MMR, MLH1–PMS1, and MLH1–MLH3. The MLH1–PMS2 complex 
also interacts with the two MutS complexes. The majority of Lynch Syndrome 
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 mutations occur in three MMR genes, MLH1, MSH2, or MSH6, although in rare 
cases  mutation in other MMR genes have been identified. Mouse lines carrying 
mutations all of the MutS and MutL genes have been generated, some of which have 
resulted in phenotypes similar to Lynch Syndrome.

Deletion of Msh2, Msh6, or Mlh1 results in intestinal tumors, although there is great 
variation of the phenotypes. Given that Msh2 participates in two “MutS”  complexes, it 
is not surprising that the Msh2−/− mice have a severe phenotype (de Wind et al. 1995; 
Reitmair et al. 1995). Fifty percent of Msh2−/− mice die by 6 months and all animals 
by 1 year. Mice develop adenomas of the small  intestine and, after 6 months, 
adenocarcinoma (Reitmair et al. 1996b). Msh3−/− mice develop tumors very late in 
life, with an overall tumor spectrum somewhat similar to wild-type animals. This mild 
phenotype may be the result of only moderate repair defects being caused by deletion 
of Msh3, or by compensation by intact Msh2 and Msh6. These data are reminiscent 
of the absence of detectable MSH3 mutations in Lynch Syndrome families. Msh6−/− 
mice develop a similar tumor spectrum of intestinal adenomas and  adenocarcinomas 
as the Msh2−/− mice but with a delayed onset and subsequent increased survival (up 
to 16 months of age) (Edelmann et al. 1997). This delayed onset of tumor formation 
is attributed to the impairment of the repair of base-base mismatches, but retention 
of the 2- to 4-base-pair insertion/deletion repair. Also, as a result of this retention of 
2- to 4-base-pair insertion/deletion repair, the MSI phenotype in tumors is absent (de 
Wind et al. 1999; Edelmann et al. 2000). Given the redundancy in function between 
MMR genes,  compound-knockout mice have also been generated. Inactivation of 
both Msh3 and Msh6 in mice is associated with adenocarcinoma of the small 
intestine and decreased survival compared to the single-gene-inactivation controls. 
These phenotypes are more similar to Msh2−/− mice.

Mutation of Mlh1 results in a severe phenotype and a markedly reduced lifespan 
(6 months) similar to Msh2−/− mice (Baker et al. 1996; Edelmann et al. 1996, 1999; 
Prolla et al. 1998). Intestinal adenocarcinoma, skin tumors, and T-cell lymphomas 
have also been detected. As a result of the complete ablation of repair mechanisms 
in Mlh1−/− mice, MSI is a characteristic of their tumors.

Because the lifespan of many homozygous MMR mice is markedly shortened 
by aggressive lymphomas, studies of spontaneous intestinal tumors are more 
complicated. To circumvent this, intestinal tumorigenesis can be accelerated by 
breeding homozygous mutant MMR mice to carry an Apc mutation. Msh3, Msh6, 
Mlh1, Pms2, and Msh3/Msh6 deficient mice have all been bred with mutant Apc 
mice (Baker et al. 1998; Edelmann et al. 1999; Kuraguchi et al. 2001; Reitmair 
et al. 1996a; Wei et al. 2002). In each case, there is a significant increase in tumor 
number and a consequent decreased lifespan compared to controls.

More recent studies of the role of MMR genes in intestinal tumor formation 
have shifted to knock-in allele designs, to analyze individual Lynch Syndrome 
mutations. Often these are missense mutations, which have quite different outcomes 
than gene deletions. The first of the knock-in MMR mice, Msh2GA, carries a mutation 
at codon 674 (glycine to alanine) in the Msh2 coding region (Lin et al. 2004). 
This mutation affects a conserved ATPase domain of Msh2 that is crucial for 
initiation of repair by MutS homologs (Alani et al. 1997; Drotschmann et al. 1999; 
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Wu and Marinus 1994). Analysis of cells from Msh2GA/GA mice showed that, 
although apoptotic responses were comparable to wild-type cells, ATP-mediated 
mismatch release was impaired, similar to Msh2−/− cells. This repair defect results 
in cancer predisposition in vivo that is similar to Msh2−/− mice: all Msh2GA/GA mice 
succumb to lymphoid or intestinal tumors by 1 year. The delayed onset of cancer 
in MshGA/GA mice compared to Msh2−/− mice indicates that the remaining functional 
apoptotic response can stall the onset of tumorigenesis.

Another knock-in mouse model carries a mutation at codon 1217 (threonine to 
aspartate) in the Msh6 gene (Yang et al. 2004). The Msh6TD mutation impairs ATP-
binding or its processing steps in the repair process (Hess et al. 2002). Studies from 
mutant cell extracts found that the DNA damage response and mismatch-binding 
capacity was not impaired; however, cells were deficient in ATP-induced mismatch 
release. Msh6TD/TD cell extracts were deficient in repair of both base substitutions 
and dinucleotide insertion/deletion loops, in contrast to Msh6−/− cell extracts that 
were not. Msh6TD/TD mice had a cancer phenotype similar to Msh6−/− mice, although 
they were characterized by a delayed tumor onset.

Two additional genes involved with DNA MMR, Flap endonuclease 1 (Fen1) 
and exonuclease 1 (Exo1) have been studied to determine their potential contribu-
tion in GI tumors. Fen1 was found to promote tumor progression when combined 
with Apc1638N/+ (Kucherlapati et al. 2002). Exo1 in combination with Apc1638N/+ 
showed a moderate increase in tumor incidence and multiplicity when compared 
to Apc1638N/+ siblings (Kucherlapati et al. 2007). These mice have decreased median 
survival, which is due to infections resulting from an impaired immune response. 
Triple mutant mice Apc1638N/+ Exo1Fen1 mice survive longer and display invasive 
GI tumors with MSI.

Immune-Deficient GEM

Inflammatory bowel disease (IBD) in humans has been divided into two major 
forms, ulcerative colitis (UC) and Crohn’s disease (Podolsky 1991). Although the 
underlying mechanisms of IBD development are not fully understood, it certainly 
involves an immune response to intestinal bacterial and subsequent inflammation. 
IBD very markedly increases the risk of GI cancer above that of the general popula-
tion (Eaden et al. 2001; Itzkowitz 1997). The risk of colitis-associated colon cancer 
(CACC) among patients is related to the severity of colitis. Although the pathogen-
esis of CACC remains unclear, it is characterized by an increased rate of epithelial 
proliferation associated with repetitive cycles of inflammation, tissue damage, and 
regeneration. Various immune-deficient mouse models have been generated to model 
IBD and are commonly characterized by inflammation of the large bowel with pro-
liferative lesions that occasionally progress to adenocarcinoma. Many of these mod-
els, when rederived in a germ-free (bacteria-free and virus-free) environment, have 
a less severe phenotype than those maintained under normal conditions, suggesting 
roles for both pathogens and inflammatory responses in tumor susceptibility.
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Cytokine-Deficient Mice

Il-2 was initially believed critical for the proliferation of T-cells in vitro; however, in 
vivo studies indicate that this is not the case (Hatakeyama et al. 1989). More recent 
studies point to a newly defined role for Il-2 in the development and  homeostasis 
of regulatory T-cells (Burchill et al. 2007). Il-2−/− mice develops  symptoms of UC 
(Sadlack et al. 1993). Half of the mice die within 9 weeks from severe anemia while 
the rest die within 6 months due to wasting. None of these mice develop GI cancer. 
When Il2−/− mice are crossed with b2-microglobulin null mice, 32% develop colonic 
adenocarcinoma between 6 and 12 months of age (Simpson et al. 1995; Sohn et al. 
2001). The late onset of adenocarcinoma suggests that prolonged chronic inflam-
mation may be required for tumorigenesis. All tumors from these compound mice 
carry mutations in Apc; more than half carry p53 mutations. Il10−/− mice develop 
symptoms characteristic of Crohn’s disease; 60% of mice develop colonic adeno-
carcinoma (Berg et al. 1996; Kuhn et al. 1993). These adenocarcinomas are not 
associated with mutations in genes typical of GI cancer, such as p53, Apc, Msh2, 
or K-ras. Gαi2-knockout mice develop inflammation limited to the colon; 31% 
develop neoplasms throughout the colon anywhere from 15 to 36 weeks (Rudolph 
et al. 1995). A recent study by Edwards et al. (2008) found that the Gi2-α−/− colonic 
epithelium is hyperproliferative even before the onset of colitis and resistant to 
induction of apoptosis. They concluded from their study that Gi2α is a direct nega-
tive regulator of colonic epithelium. Seventy-five percent of these mice die by 28 
weeks, preventing long-term studies. Recent work by Ko et al. (2008) investigated 
the effect of deletion of IL-4Ra gene on AOM-induced aberrant crypt foci number 
and size in Balb/c mice. IL-4Rα-dependent signaling was found to have a protec-
tive, anti-neoplastic role during the post-initiation phase of AOM-induced colorec-
tal carcinogenesis in Balb/c mice. Deletion of the IL-4Ra gene led to high serum 
levels of IL-4. Additionally IL-13, which can signal through the IL-4Rα receptor 
normally, instead signals via the IL-13Rα2 receptor leading to induction of TGFβ, 
which has pro-tumororigenic activity at early stages of intestinal tumorigenesis.

Mucin-Deficient Mice

Mucins are highly glycosylated proteins that are the major component of the mucus 
that lubricates and protects underlying intestinal epithelium (Gendler and Spicer 
1995). Alterations of mucin expression and glycosylation have been detected in 
human colon cancer, but their role in tumorigenesis is not well understood (Kim 
et al. 1996). MUC2 is the most abundant secreted gastrointestinal apomucin 
(Kim and Gum 1995; van Klinken et al. 1999). Muc2-deficient GEM were gen-
erated by replacing exons 2–4 of Muc2 with a PGK-neo cassette (Velcich et al. 
2002). The resultant Muc2−/− mice were characterized by the absence of recogniz-
able  goblet cells throughout the intestine. By 12 months, 65% of Muc2−/− mice 
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had developed adenomas with an average of >1.5 tumors per mouse. Adenomas 
occurred in the small and large intestine, as well as the rectum. In older mice, 
adenomas spontaneously progressed to adenocarcinoma. The formation of rectal 
tumors distinguishes the Muc2−/− mouse from many of the other mice presented 
here and may reflect the disorganized inflammatory processes occurring in 
response to the loss of normal mucins. To understand the impact of the MUC2 and 
APC interaction on tumorigenesis, Yang et al. (2008) crossed Muc2−/− mice with 
both the Apc1638N/+ and ApcMin/+ mice respectively. They found that introduction of 
Muc2 into Apc1638N/+ and ApcMin/+ greatly increased transformation induced by the 
Apc mutation and significantly shifted tumor development toward the colon as a 
function of Muc2 gene dosage.

MUC1 is an epithelial cell glycoprotein overexpressed and hypoglycosylated 
in the majority of human adenocarcinomas; its expression is also increased in IBD 
(Vlad et al. 2004; Campbell et al. 2001; Rhodes 1996). Il10−/− mice display some of 
the characteristics of human IBD; however, this mouse model lacks Muc1 expres-
sion. To explore the importance of MUC1 in IBD, Beatty et al. (2007) introduced 
the human MUC1 molecule into the Il10−/− mouse model. These mice develop IBD, 
but the disease is characterized by an earlier age of onset, greater inflammation, and 
higher number of colon cancers than Il10−/− controls.

Carcinogen-Induced Models of Intestinal Tumorigenesis

Intestinal tumors can be induced in rodents by a number of carcinogens including 
N-methyl-N′-nitro-N-nitrosoguanidine (Schoental and Bensted 1969), N-ethyl-N′-
nitro-N-nitrosoguanidine, 1,2-dimethylhydrazine (Colussi et al. 2001), 2-amino-3,4-
dimethylimidazo[4,5-f]quinoline (Fujita et al. 1999), and N-methyl-N-nitrosourea 
(Qin et al. 2000). Azoxymethane (AOM), a metabolite of 1,2-dimethylhydrazine 
(DMH), is the most widely used compound and offers a number of advantages over 
the parent compound including enhanced potency and chemical stability. In AOM-
treated rodents, most intestinal tumors arise in the colon and form grossly visible 
exophytic polypoid or plaque-like growths. The microscopic appearance of low-
grade lesions in these models is similar to human colonic adenomas. There is also 
evidence that AOM-treated mice may be a useful model for studying metastatic 
colorectal cancer (Ochiai et al. 2001). Studies of AOM-treated mice have identi-
fied some of the molecular abnormalities associated with these tumors and suggest 
that in many ways they are indistinguishable from tumors initiated by activation 
of Wnt signaling (Perantoni and Rice 1999; Takahashi et al. 2000; Kaiser et al. 
2007). The dramatic differences in tumor number and penetrance associated with 
AOM-treatment in different mouse strains also highlight the ability of the mouse 
to model the complexities of genetic background and possibly environment (e.g., 
intestinal bacteria) and their effects on tumor susceptibility and eventual response 
to therapy in the human.
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Other GEM Models of Intestinal Cancer

RbMI/MI Mice

In addition to mouse models engineered to perturb known pathways in the develop-
ment of GI cancer, interesting findings have emerged from mouse models target-
ing pathways not associated with GI cancer. One of these is the RbMI/MI mouse, 
which carries a knock-in mutation that eliminates the C-terminal caspase-cleavage 
site of the retinoblastoma (Rb) protein, a known regulator of cell proliferation 
and cell death (Chau et al. 2002). Apoptosis was attenuated in the intestine of the 
RbMI/MI mice following endotoxic shock; embryo-derived fibroblasts were resist-
ant to apoptosis induced by the type I receptor for tumor necrosis factor (TNFRI) 
(Chau et al. 2002). These results suggested that caspase cleavage of Rb is required 
for TNFRI-induced cell death and that the antiapoptotic function of the RbMI/MI 
allele might promote tumor formation when tumor suppression function is altered. 
Borges et al. (2005) explored this hypothesis by combining the RbMI/MI allele with 
a p53-null background. Introduction of RbMI/MI statistically significantly increased 
the incidence of colonic adenomas as well as lymphoma. Colonic tumors are a rare 
phenotype in p53-null mice (Donehower et al. 1995; Jacks et al. 1994); 26% of 
RbMI/MI;p53−/− mice developed colonic tumors versus 3% of p53−/− mice (Borges 
et al. 2005). In recent studies by Kucherlapati et al. (2008), mice were generated 
with an Apc(1638N) allele, Rb(tm2brn) floxed alleles, and a villin-cre transgene 
(RBVCA) to examine the role of Rb1 in GI tumors. RBVCA mice were found to 
have reduced median survival due to increased tumor incidence and multiplicity in 
the cecum and proximal colon. These results indicate that Rb1 may influence the 
location of the tumor within the GI tract, and that both cecal and duodenal tumors 
initiate through inactivation of Apc.

PI(3)K-Deficient Mice

Phosphoinositide-3-OH kinases (PI(3)Ks) constitute a family of evolutionarily 
conserved lipid kinases that regulate numerous fundamental cellular responses, 
including proliferation, transformation, differentiation, and protection from 
apoptosis (Leevers et al. 1999; Toker and Cantley 1997). Homozygous gene-tar-
geted deletion of the p110g catalytic subunit of PI(3)K leads to the development 
of invasive colorectal adenocarcinomas in mice (Sasaki et al. 2000). Epithelial 
tumors were detected in the colon and represented all stages of histopathol-
ogy, including tubular and villous adenomas and invasive adenocarcinoma. The 
large carcinomas demonstrated transmural, local invasion, and metastasis into 
the peritoneal cavity. No tumors were found in the small intestine, stomach, or 
other tissues.
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Cdx2−/− Mice

Cdx2, one of the mouse homologs of the Drosophila melanogaster protein, caudal 
(Mlodzik and Gehring 1987), is a key transcription factor for intestinal develop-
ment and differentiation (Beck et al. 1995; Lorentz et al. 1997; Traber and Silberg 
1996). Homozygous knockout of the Cdx2 gene in mice results in embryonic 
lethality (Chawengsaksophak et al. 1997; Tamai et al. 1999). Ninety percent of 
Cdx2+/− mice develop multiple (up to ten) intestinal adenomas by 3 months of age; 
these adenomas primarily occur in the proximal colon. To test whether reduced 
expression of Cdx2 may be responsible for colon tumor progression, the Cdx2-
knockout allele was introduced into the Apc716/+ background to generate double 
heterozygote mice, Apc716/+;Cdx2+/− (Aoki et al. 2003). These mice develop colonic 
adenomas that are characterized by loss of heterozygosity (LOH) at the Apc locus. 
Apc716/+; Cdx2+/− mice rarely survive more than 30 weeks, preventing the study of 
malignant progression.

Dominant Negative N-Cadherin Mice

Cadherins are transmembrane glycoproteins that mediate homophilic adhesive 
interactions between cells (Kemler 1993; Ranscht 1994). Their conserved cyto-
plasmic domains interact directly with β-catenin or plakoglobin and are essential 
for linkage to the actin cytoskeleton and for productive cell–cell adhesion (Hinck 
et al. 1994; Nathke et al. 1994). Control of cell adhesion is important during 
 embryogenesis, and perturbations of cell adhesion are associated with tumor  invasion 
and  metastasis. To understand the role of cadherins in intestinal tumorigenesis, 
Hermiston and Gordon (1995) generated a transgenic mouse line on the 129SV/
B6 background that expresses dominant negative N-cadherin in the crypt-villus 
epithelium of the small intestine using a Fabp promoter. By 3 months of age, the 
mice developed features of Crohn’s disease; by 6 months, adenomas; this suggested 
relationships among the structural integrity of the intestinal epithelium, inflammatory 
responses, and, ultimately, tumor initiation.

Conclusions

This chapter highlights many of the mouse models currently in use that allow us 
to learn about the initiation and progression of intestinal cancers. It is important to 
highlight some considerations concerning mouse models while thinking about such 
studies. Species, strain, and sex of the mice may affect experimental outcomes. 
The same gene mutated in two mouse strains may lead to dramatically different 
pheno types, with great variation in expressivity and penetrance. Male mice are 
more susceptible to gastric and hepatic cancers; therefore, studies without male 
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mice may under-represent these tumors (Rogers and Fox 2004). Additionally, 
the environment in which mice are bred and housed can affect experimental out-
comes. Microbial populations most certainly differ between facilities and perhaps 
even across rooms and cages and, as described earlier, can affect inflammatory 
responses and subsequent gastrointestinal disease. Dietary differences also affect 
tumor susceptibility. However, despite the variables affecting outcome in these 
long-term in vivo experiments, the ability to simulate the complex germline and 
somatic alterations that occur in intestinal tumor formation is very powerful. The 
effects of aging and environmental exposures can also be queried in these complex 
in vivo systems in order to model human cancer.
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