
Preface

Ich schaffe, was ihr wollt, und schaffe mehr;
Zwar ist es leicht, doch ist das Leichte schwer.
Es liegt schon da, doch um es zu erlangen,
Das ist die Kunst! Wer weiss es anzufangen?
Goethe, Faust II

The present text centers around a fundamental task of measure and
integration theory, which has not found an adequate solution so far. It is
the task to produce, with unified and universal means, true contents and
above all measures from more primitive data, in order to extend elementary
contents and to represent so-called elementary integrals. The traditional
main tools are the Carathéodory extension theorem and the Daniell-Stone
representation theorem. These theorems are much too restrictive in order
to fulfil the needs.

Around 1970 a new development started in the work of Topsøe and
others. It was based on the notion of regularity, which for a set function
means to determine its values from a particular set system by approximation
from above or below. In traditional measure theory this notion is linked to
topology.

The present text wants to be a systematic treatment of the context in
the new spirit. It is based to some extent on personal work of the author.
The main results are equivalence theorems for the existence and uniqueness
of extensions and representations, which are not more complicated than
the traditional ones but much more powerful. With these results the text
clarifies and unifies the entire context. The main instruments are certain
new envelope formations which resemble the traditional Carathéodory outer
measure.

The systematic theory has numerous applications. The most important
application is the full extension of the classical Riesz representation theorem
in terms of Radon measures, from locally compact to arbitrary Hausdorff
topological spaces. As another application we note an extension and at
the same time simplification of the Choquet capacitability theorem, which
shows that the new formations can be useful for so-called non-additive set
functions as well. Some of the applications are treated without pronounced
technical sophistication. We rather want to demonstrate that certain basic
ideas and results are natural outflows from the new theory.



VIII PREFACE

The central parts of the text are chapters II and V. Their main substance
as well as their history and motivation are outlined in the introduction below.
It is an elaboration of a lecture which the author delivered at several places,
in the present form for the first time at the symposium in honour of Adriaan
C.Zaanen in Leiden in September 1993.

Chapters I and IV are filled with preparations. We need certain standard
material in unconventional versions which have to be developed. We also
need several new notations.

The application to the Riesz representation theorem is in chapter V
section 16. The other applications are in chapters III, VI and VII. We
emphasize that chapter VII develops an abstract product formation which
comprises the Radon product measure of Radon measures. The final chapter
VIII is an appendix which is independent of the central chapters II and V.
It wants to demonstrate that the unconventional notions of content and
measure introduced in chapter I can be useful in other areas of measure
theory as well.

All this says that the central themes of the present text are the funda-
mentals of measure and integration theory. The author hopes that its readers
will find it less technical than it looks at first sight. He thinks that the text
can be read with appreciation by anyone who has struggled through the
traditional abstract and topological theories. However, it is different from a
textbook in the usual sense. The presentation is ab ovo, though more like
in a book of research. The author hopes that the text will be used in future
courses. An ideal prerequisite would be the recent small book of Stroock
[1994], because on the one hand it provides the concrete material which
should precede this one, and on the other hand it does not take the reader
onto the traditional paths of abstract measure and integration theory which
the present work wants to restructure.
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