CONTENTS

CHAPTER 1: THE ENVIRONMENTAL ISOTOPES	1
Environmental Isotopes in Hydrogeology	2
Elements, nuclides, and isotopes	2
Nucleosynthesis and the birth of the solar system	3
Early days in isotope research	4
Why "environmental" isotopes?	5
Isotopes, ratios, deltas (δ) and permils (‰)	6
Stable Isotopes: Standards and Measurement	7
Oxygen-18 and deuterium in waters	8
Carbonate, organic carbon and hydrocarbon	9
Sulphate and sulphide	11
Nitrate and reduced nitrogen	11
Chloride	12
Bromide, lithium and boron	12
Strontium	13
Isotope ratio mass spectrometry	13
Gas source mass spectrometry	13
Solid source mass spectrometry	15
δ -Value corrections and conversions	15
Radioisotopes	16
Tritium	16
Carbon-14	18
Chlorine-36 and iodine-129	19
Argon-39	20
Krypton	20
Uranium series isotopes	20
Isotope Fractionation	21
Physicochemical fractionation	21
Diffusive fractionation	24
Isotopic equilibrium	25
The example of "O fractionation between water and vapour	26
Temperature effect on fractionation	27
Kinetic (nonequilibrium) fractionation	29
Isotope Fractionation (α), Enrichment (ε) and Separation (Δ)	31
The example of water-vapour reaction	31
Problems	33

CHAPTER 2: TRACING THE HYDROLOGICAL CYCLE	35
Craig's Meteoric Relationship in Global Fresh Waters	36
Partitioning of Isotopes Through the Hydrological Cycle	
Isotopic composition of ocean waters	37

The atmosphere and vapour mass formation	39
Isotopic equilibrium in water-vapour exchange	39
Humidity and kinetic (nonequilibrium) evaporation	41
Deuterium excess "d" in meteoric waters	43
Atmospheric mixing and global atmospheric water vapour	46
Condensation, Precipitation and the Meteoric Water Line	46
Rainout and Rayleigh distillation	47
Slope of the meteoric water line	49
Local meteoric water lines	51
A Closer Look at Rayleigh Distillation	55
Effects of Extreme Evaporation	57
Evaporation in Lakes	57
Evaporation of brines	59
Problems	60

CHAPTER 3:	PRECIPITATION	
The T–8	5 ¹⁸ O Correlation in Precipitation	
	δ^{18} O on the global scale	
	Latitude effect	
	Continental effects	
Local ef	fects on $T - \delta^{18}O$	
	Altitude effect	
	Seasonal effects	
	Condensation of coastal fog	
	Kinetic effects of secondary evaporation	
Ice Core	es and Paleotemperature	
Problem	- IS	

CHAPTER 4: GR	OUNDWATER	
Recharge in	Temperate Climates	80
Atte	enuation of seasonal variations	80
Con	nparing shallow groundwaters with precipitation	
Rec	harge by snowmelt	85
Recharge in	Arid Regions	86
Eva	porative enrichment in alluvial groundwaters	87
Rec	harge by direct infiltration	88
Soil	profiles and recharge rates	89
Esti	mating recharge with ³⁶ Cl and chloride	
Wat	er loss by evaporation vs. transpiration	
Recharge fro	m River-Connected Aguifers	
Tim	e series monitoring in a river-connected aquifer	
The	Swiss tritium tracer "experiment"	
Wat	er balance with ¹⁴ C	
Rec	harge from the Nile River	
Rec	harge by desert dams	99
Hydrograph	Separation in Catchment Studies	. 99
Exa	mple of the Big Otter Creek Basin, Ontario	

An example from Australia	104
Groundwater Mixing	104
Binary and ternary groundwater mixing	105
Mixing of groundwaters in regional flow systems	105
Groundwater mixing in karst systems	107
Problems	108

PTER 5: TRACING THE CARBON CYCLE	•••••
Evolution of Carbon in Groundwaters	
Carbonate Geochemistry.	
Activity, concentration and mineral solubility relationships	
Atmospheric and soil CO ₂	
Dissolution of soil CO ₂ and carbonate speciation	
pH buffering and mineral weathering	
Carbon-13 in the Carbonate System	
Vegetation and soil CO ₂	
¹³ C fractionation in CO ₂ – DIC reactions	
Evolution of $\delta^{13}C_{DIC}$ during carbonate dissolution	
Incongruent dissolution of dolomite	
Dissolved Organic Carbon	
DOC and redox evolution	
Methane in Groundwaters	
Biogenic methane	
Thermocatalytic methane	
Abiogenic and mantle methane	
¹⁴ C and sources of carbon	
Isotopic composition of carbonates	
δ^{18} O in secondary calcite and paleotemperatures	
Problems	

Sulphate, Sulphide and the Sulphur Cycle	138
Marine sulphate	139
Oxidation of sulphide and terrestrial sulphate	142
Atmospheric sulphate	144
Sulphate reduction	
Sulphate-water ¹⁸ O exchange	147
Nitrogen cycling in rural watersheds	
The geochemistry of nitrate	
Isotopic composition of nitrate	150
Nitrate contamination in shallow groundwaters	
The "Fuhrberger Feld" Study	
Denitrification and ¹⁵ N	153
Sulphate reduction at depth	154
Source of chloride salinity	155
Ionic ratio indicators	
Chlorine isotopes — δ^{37} Cl	155

Landfill Leachates	157
Degradation of Chloro-organics and hydrocarbon	159
Sensitivity of Groundwater to Contamination	160
Temporal monitoring with stable isotopes	161
Aquitards — impermeable or leaky barriers?	161
Diffusion across aquitards	163
Summary of Isotopes in Contaminant Hydrogeology	165
Contamination in agricultural watersheds	166
Sanitary landfills	167
Fuel and solvent contaminated sites	167
Siting hazardous waste facilities	168
Problems	168

The "Age" of Groundwater	172
"Modern" groundwater	172
The tools for dating groundwater	172
Stable Isotopes	173
Tritium in Precipitation	174
Cosmogenic tritium.	174
Thermonuclear (bomb) tritium	175
Nuclear reactor tritium	178
Geogenic production of ³ H	179
Dating Groundwaters with Tritium	179
Velocity of the 1963 "bomb peak"	180
Radioactive decay	181
Input function for ³ H in groundwater	183
Time series analysis	184
Qualitative interpretation of ³ H data	184
Tritium in alluvial groundwaters — an example from Oman	185
Deep groundwaters - mixing in fractured rock	186
Groundwater Dating with ³ H - ³ He	186
Helium-tritium systematics	187
Applications of the ³ H- ³ He method	188
Chlorofluorocarbons (CFCs)	188
Thermonuclear ³⁶ Cl	189
Detecting Modern Groundwaters with ⁸⁵ Kr	191
Submodern groundwater	192
Argon-39	192
Sílica-32	194
Problems	195

CHAPTER 8: AGE DATING OLD GROUNDWATERS	197
Stable Isotopes and Paleogroundwaters	
Groundwater Dating with Radiocarbon	
Decay of ¹⁴ C as a measure of time	
Production of ¹⁴ C in the atmosphere	202

Natural variations in atmospheric ¹⁴ C	203
Anthropogenic impacts on atmospheric ¹⁴ C	204
The ¹⁴ C pathway to groundwater in the recharge environment	205
Correction for Carbonate Dissolution.	206
Statistical correction (STAT model)	207
Alkalinity correction (ALK model)	208
Chemical mass-balance correction (CMB model)	209
δ^{13} C mixing (δ^{13} C model)	210
The effect of dolomite dissolution	212
Matrix exchange (Fontes-Garnier model)	212
Which model do I use?	213
Case study of the Triassic sandstone aquifer, U.K.	215
Some Additional Complications to ¹⁴ C Dating	217
Matrix diffusion of ¹⁴ C	217
Sulphate reduction	218
Incorporation of geogenic CO ₂	220
Methanogenesis	220
Dilution factors for multiple processes	222
Revisiting the groundwaters in southern Oman	222
Modelling ¹⁴ C ages with NETPATH	224
¹⁴ C Dating with Dissolved Organic Carbon (DOC)	225
The initial ¹⁴ C activity in fulvic acid $(a_0^{14}C_{FA})$	225
Advantages and disadvantages of DOC	226
Case studies for ¹⁴ C dating with DOC and DIC	227
The Milk River aquifer	227
The Gorleben study. Germany.	229
Chlorine-36 and Very Old Groundwater	231
Units of expression for ³⁶ Cl data	231
Cosmogenic production of ³⁶ Cl	232
Subsurface production of ³⁶ Cl	234
Example of the Great Artesian Basin, Australia	235
Summary of ³⁶ Cl in groundwater dating	237
The Uranium Decay Series	238
²³⁴ U/ ²³⁸ U disequilibrium	238
Dating with ²²⁶ Ra and ²²² Rn	240
⁴ He and old groundwater	241
Problems	243

CHAPTER 9: WATER - ROCK INTERACTION	245
Mechanisms of Isotope Exchange	
High Temperature Systems	247
Magmatic water and primary silicates	
The ¹⁸ O shift in geothermal waters	250
Andesitic volcanism and geothermal waters	
Subsurface steam separation	253
Geothermometry	253
Low Temperature Water-Rock Interaction	255
Hydration of primary silicate minerals	
The example of shield brines	256

Low-temperature exchange in sedimentary formations	258
Hyperfiltration of isotopes	260
Strontium Isotopes in Water and Rock	260
Isotope Exchange in Gas - Water Reactions	
Deuterium shift — exchange with H ₂ S	
¹⁸ O exchange between H ₂ O and CO ₂	263
High pH Groundwaters — The Effect of Cement Reactions	
Problems	265

CHAPTER 10: FIELD METHODS FOR SAMPLING	
Groundwater	
Sample sites	
Getting water from the well	
Deuterium and oxygen-18	
Tritium	
Carbon-13 in DIC	
Radiocarbon in DIC	
Carbon-13 and ¹⁴ C in DOC	
Sulphur-34 and ¹⁸ O in aqueous sulphur compounds	
Nitrate and organic nitrogen	
Chloride	
Uranium series nuclides	
Water in the Unsaturated Zone	
Precipitation	
Rain samples for ¹⁸ O, ² H and ³ H	
Snow and ice ¹⁸ O, ² H and tritium	
Gases	
Soil CO ₂	
Gas in groundwater	
Geochemistry	
Field measurements	
Major anions (Cl ⁻ , SO ₄ ⁻ , NO ₃ ⁻ , F ⁻ , Br ⁻)	
Major, minor and trace metals	
Dissolved organic carbon (DOC)	

REFERENCES	291
SUBJECT INDEX	312