Contents

Preface			
1	Int	roduction	1
2	Th	e governing principles	5
	2.1	The physical nature of permeable rocks	5
	2.2	Geometrical characteristics	11
	2.3	The motion of fluid elements through the medium	13
	2.4		18
	2.5	The transport velocity and the incompressibility	
		condition	22
	2.6	Darcy's law	25
	2.7	Permeability k	29
	2.8	The thermal energy balance	34
	2.9	Dissolved species balance	35
	2.10	Equations of state	38
3	Gei	neral flow characteristics: patterns of flow	41
	3.1	Stream functions	41
	3.2	Natural or intrinsic coordinates	43
	3.3	Boundary conditions for flow	45
	3.4	Vorticity	47
	3.5	Dynamical scaling	53
	3.6	Uniqueness and minimum dissipation theorems	59
	3.7	Geometrical scaling	61
	3.8	1	67
	3.9	Long and multiple lenticular layers	74
	3.10	Flow transients	80
	3.11	Diffusion-induced flow in fissures or fractures	87
4	Geı	neral flow characteristics: patterns of reactions	90
	4.1	Simple reaction types	90
	4.2	The approach to equilibrium at dissolution or	
		reaction boundaries	96
	4.3	Isothermal reaction fronts	100
	4.4	Gradient reactions	107
	4.5	Mixing zones	112

viii Contents

4.6	Mixing and reaction patterns from faults and	
	fractures	115
4.7	Enhancement and destruction of porosity	125
4.8	Isotherm-following reactions	130
5 Ins	stabilities	140
5.1	Rayleigh–Darcy instability	140
5.2	Salinity stabilization	148
5.3	Double-advective, double-diffusive instabilities	152
5.4	Brine invasion beneath hypersaline lagoons by	
	double-diffusive fingering	159
5.5	Stability in the presence of flow	161
5.6	Saffman-Taylor instability	162
	essure-driven flows	166
6.1	Flow in confined aquifers	166
6.2	Flow in unconfined aquifers	176
6.3	Computation of three-dimensional basin-wide flows	182
6.4	Temperature distributions	185
6.5	Mixing zones	201
6.6	Trapping of hydrocarbons	205
6.7	Spatial distributions of mineralization associated	
	with flow	211
7 Th	ermal convection	220
7.1	The occurrence of thermally driven flows	220
7.2	Submerged banks of slowly varying thickness with	
	small Rayleigh number and scale ratio	223
7.3	Convection and diagenesis in sloping isolated	
	permeable strata	232
7.4	Compact platforms or reefs at low Rayleigh	
	numbers	236
7.5	High Rayleigh number plumes	244
7.6	Flow, temperature, and gradient reaction patterns at	
	intermediate Rayleigh number and scale ratio	252
7.7	Paleoconvection and dolomitization in the Latemar	
	Massif	265
Refere	nras	271
Index	in to	271
INUCA		219