Contents

Pr	eface		v	
1	Topological Spaces			
	1.1	Basic Notions	1	
	1.2	Subspaces. Quotient Spaces	5	
	1.3	Products and Sums	8	
	1.4	Compact Spaces	11	
	1.5	Proper Maps	14	
	1.6	Paracompact Spaces	15	
	1.7	Topological Groups	15	
	1.8	Transformation Groups	17	
	1.9	Projective Spaces. Grassmann Manifolds	21	
2	The	Fundamental Group	24	
	2.1	The Notion of Homotopy	25	
	2.2	Further Homotopy Notions	30	
	2.3	Standard Spaces	34	
	2.4	Mapping Spaces and Homotopy	37	
	2.5	The Fundamental Groupoid	41	
	2.6	The Theorem of Seifert and van Kampen	45	
	2.7	The Fundamental Group of the Circle	47	
	2.8	Examples	52	
	2.9	Homotopy Groupoids	58	
3	Cov	ering Spaces	62	
	3.1	Locally Trivial Maps. Covering Spaces	62	
	3.2	Fibre Transport. Exact Sequence	66	
	3.3	Classification of Coverings	70	
	3.4	Connected Groupoids	72	
	3.5	Existence of Liftings	76	
	3.6	The Universal Covering	78	
4	Elementary Homotopy Theory 81			
	4.1	The Mapping Cylinder	81	
	4.2	The Double Mapping Cylinder	84	
	4.3	Suspension. Homotopy Groups	86	
	4.4		89	

	4.5	Groups and Cogroups	90	
	4.6	The Cofibre Sequence	92	
	4.7	The Fibre Sequence	97	
5				
	5.1	The Homotopy Extension Property	101	
	5.2	Transport	107	
	5.3	Replacing a Map by a Cofibration	110	
	5.4	Characterization of Cofibrations	113	
	5.5	The Homotopy Lifting Property	115	
	5.6	Transport	119	
	5.7	Replacing a Map by a Fibration	120	
6	Hom	otopy Groups	121	
	6.1	The Exact Sequence of Homotopy Groups	122	
	6.2	The Role of the Base Point	126	
	6.3	Serre Fibrations	129	
	6.4	The Excision Theorem	133	
	6.5	The Degree	135	
	6.6	The Brouwer Fixed Point Theorem	137	
	6.7	Higher Connectivity	141	
	6.8	Classical Groups	146	
	6.9	Proof of the Excision Theorem	148	
	6.10	Further Applications of Excision	152	
7	Stabl	le Homotopy. Duality	159	
	7.1	A Stable Category	159	
	7.2	Mapping Cones	164	
	7.3	Euclidean Complements	168	
	7.4	The Complement Duality Functor	169	
	7.5	Duality	175	
	7.6	Homology and Cohomology for Pointed Spaces	179	
	7.7	Spectral Homology and Cohomology	181	
	7.8	Alexander Duality	185	
	7.9	Compactly Generated Spaces	186	
8	Cell Complexes 1			
	8.1	Simplicial Complexes	197	
	8.2	Whitehead Complexes	199	
	8.3	CW-Complexes	203	
	8.4	Weak Homotopy Equivalences	207	
	8.5	Cellular Approximation	210	
	8.6	CW-Approximation	211	

	8.7	Homotopy Classification	216
	8.8	Eilenberg–Mac Lane Spaces	
9	Singu	ılar Homology	223
	9.1	Singular Homology Groups	224
	9.2	The Fundamental Group	227
	9.3	Homotopy	228
	9.4	Barycentric Subdivision. Excision	231
	9.5	Weak Equivalences and Homology	235
	9.6	Homology with Coefficients	237
	9.7	The Theorem of Eilenberg and Zilber	238
	9.8	The Homology Product	241
10	Hom	ology	244
	10.1	The Axioms of Eilenberg and Steenrod	244
	10.2	Elementary Consequences of the Axioms	246
	10.3	Jordan Curves. Invariance of Domain	249
	10.4	Reduced Homology Groups	252
	10.5	The Degree	256
	10.6	The Theorem of Borsuk and Ulam	261
	10.7	Mayer–Vietoris Sequences	265
	10.8	Colimits	270
	10.9	Suspension	273
	10.7		210
11	Hom	ological Algebra	275
	11.1	Diagrams	275
	11.2	Exact Sequences	279
	11.3	Chain Complexes	283
	11.4	Cochain complexes	285
	11.5	Natural Chain Maps and Homotopies	286
	11.6	Chain Equivalences	287
	11.7	Linear Algebra of Chain Complexes	289
	11.8	The Functors Tor and Ext	292
	11.9	Universal Coefficients	295
		The Künneth Formula	298
	11.10		270
12		lar Homology	300
	12.1	Cellular Chain Complexes	300
	12.2	Cellular Homology equals Homology	304
	12.3	Simplicial Complexes	
	12.4	The Euler Characteristic	308
	12.5	Euler Characteristic of Surfaces	311

13	Parti	tions of Unity in Homotopy Theory	318
	13.1	Partitions of Unity	318
	13.2	The Homotopy Colimit of a Covering	321
	13.3	Homotopy Equivalences	324
	13.4	Fibrations	325
14	Bund	les	328
	14.1	Principal Bundles	328
	14.2	Vector Bundles	335
	14.3	The Homotopy Theorem	342
	14.4	Universal Bundles. Classifying Spaces	344
	14.5	Algebra of Vector Bundles	351
	14.6	Grothendieck Rings of Vector Bundles	355
15	Mani	folds	358
~	15.1	Differentiable Manifolds	358
	15.2	Tangent Spaces and Differentials	362
	15.3	Smooth Transformation Groups	366
	15.4	Manifolds with Boundary	369
	15.5	Orientation	372
	15.6	Tangent Bundle. Normal Bundle	374
	15.7	Embeddings	379
	15.8	Approximation	383
	15.9	Transversality	384
		Gluing along Boundaries	388
16	Hom	ology of Manifolds	392
	16.1	Local Homology Groups	392
	16.2	Homological Orientations	394
	16.3	Homology in the Dimension of the Manifold	396
	16.4	Fundamental Class and Degree	399
	16.5	Manifolds with Boundary	402
	16.6	Winding and Linking Numbers	403
17	Coho	mology	405
		Axiomatic Cohomology	405
		Multiplicative Cohomology Theories	409
	17.3	External Products	413
	17.4	Singular Cohomology	416
	17.5	Eilenberg–Mac Lane Spaces and Cohomology	419
	17.6	The Cup Product in Singular Cohomology	422
	17.7	Fibration over Spheres	425
	17.8	The Theorem of Leray and Hirsch	427

	17.9	The Thom Isomorphism	431
18 Duality 438			
10	18.1	The Cap Product	438
	18.2	Duality Pairings	441
	18.3	The Duality Theorem	444
	18.4	Euclidean Neighbourhood Retracts	447
	18.5	Proof of the Duality Theorem	451
	18.6	Manifolds with Boundary	455
	18.7	The Intersection Form. Signature	457
	18.8	The Euler Number	461
	18.9	Euler Class and Euler Characteristic	464
	10.7		
19	Char	acteristic Classes	467
	19.1	Projective Spaces	468
	19.2	Projective Bundles	471
	19.3	Chern Classes	472
	19.4	Stiefel–Whitney Classes	478
	19.5	Pontrjagin Classes	479
	19.6	Hopf Algebras	482
	19.7	Hopf Algebras and Classifying Spaces	486
	19.8	Characteristic Numbers	491
20	Hom	ology and Homotopy	495
	20.1	The Theorem of Hurewicz	495
	20.2	Realization of Chain Complexes	501
	20.3	Serre Classes	504
	20.4	Qualitative Homology of Fibrations	505
	20.5	Consequences of the Fibration Theorem	508
	20.6	Hurewicz and Whitehead Theorems modulo Serre classes	510
	20.7	Cohomology of Eilenberg–Mac Lane Spaces	513
	20.8	Homotopy Groups of Spheres	514
	20.9	Rational Homology Theories	518
21	Bord		521
	21.1	Bordism Homology	521
	21.2	The Theorem of Pontrjagin and Thom	
	21.3	Bordism and Thom Spectra	535
	21.4	Oriented Bordism	537
Bil	oliogra	aphy	541
	Symbols 5		
Ind			557
m	ICA .		551