Contents

Preface xv

CHAPTERS

1

Computer Abstractions and Technology 2

- 1.1 Introduction 3
- 1.2 Below Your Program 10
- 1.3 Under the Covers 13
- 1.4 Performance 26
- 1.5 The Power Wall 39
- 1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors 41
- 1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 44
- 1.8 Fallacies and Pitfalls 51
- 1.9 Concluding Remarks 54
- 1.10 Historical Perspective and Further Reading 55
 - 1.11 Exercises 56

2

Instructions: Language of the Computer 74

- 2.1 Introduction 76
- 2.2 Operations of the Computer Hardware 77
- 2.3 Operands of the Computer Hardware 80
- 2.4 Signed and Unsigned Numbers 87
- 2.5 Representing Instructions in the Computer 94
- 2.6 Logical Operations 102
- 2.7 Instructions for Making Decisions 105
- 2.8 Supporting Procedures in Computer Hardware 112
- 2.9 Communicating with People 122
- 2.10 MIPS Addressing for 32-Bit Immediates and Addresses 128
- 2.11 Parallelism and Instructions: Synchronization 137
- 2.12 Translating and Starting a Program 139
- 2.13 A C Sort Example to Put It All Together 149

 \odot

- 2.14 Arrays versus Pointers 157
- 2.15 Advanced Material: Compiling C and Interpreting Java 161
- 2.16 Real Stuff: ARM Instructions 161
 - 2.17 Real Stuff: x86 Instructions 165
 - 2.18 Fallacies and Pitfalls 174
 - 2.19 Concluding Remarks 176
- 2.20 Historical Perspective and Further Reading 179
 - 2.21 Exercises 179

3 Arithmetic for Computers 222

- 3.1 Introduction 224
- 3.2 Addition and Subtraction 224
- 3.3 Multiplication 230
- 3.4 Division 236
- 3.5 Floating Point 242
- 3.6 Parallelism and Computer Arithmetic: Associativity 270
- 3.7 Real Stuff: Floating Point in the x86 272
- 3.8 Fallacies and Pitfalls 275
- 3.9 Concluding Remarks 280
- 3.10 Historical Perspective and Further Reading 283
 - 3.11 Exercises 283

4

 \odot

The Processor 298

- 4.1 Introduction 300
- 4.2 Logic Design Conventions 303
- 4.3 Building a Datapath 307
- 4.4 A Simple Implementation Scheme 316
- 4.5 An Overview of Pipelining 330
- 4.6 Pipelined Datapath and Control 344
- 4.7 Data Hazards: Forwarding versus Stalling 363
- 4.8 Control Hazards 375
- 4.9 Exceptions 384
- 4.10 Parallelism and Advanced Instruction-Level Parallelism 391
- 4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline 404

 \odot

 \odot

- 4.12 Advanced Topic: an Introduction to Digital Design
 Using a Hardware Design Language to Describe and
 Model a Pipeline and More Pipelining Illustrations 406
 - 4.13 Fallacies and Pitfalls 407
 - 4.14 Concluding Remarks 408
- 4.15 Historical Perspective and Further Reading 409
 - 4.16 Exercises 409

Large and Fast: Exploiting Memory Hierarchy 450

- 5.1 Introduction 452
- 5.2 The Basics of Caches 457
- 5.3 Measuring and Improving Cache Performance 475
- 5.4 Virtual Memory 492
- 5.5 A Common Framework for Memory Hierarchies 518
- 5.6 Virtual Machines 525
- 5.7 Using a Finite-State Machine to Control a Simple Cache 529
- 5.8 Parallelism and Memory Hierarchies: Cache Coherence 534
- 5.9 Advanced Material: Implementing Cache Controllers 538
- 5.10 Real Stuff: the AMD Opteron X4 (Barcelona) and Intel Nehalem Memory Hierarchies 539
- 5.11 Fallacies and Pitfalls 543
- 5.12 Concluding Remarks 547
- 5.13 Historical Perspective and Further Reading 548
 - 5.14 Exercises 548

6 Storage and Other I/O Topics 568

- 6.1 Introduction 570
- 6.2 Dependability, Reliability, and Availability 573
- 6.3 Disk Storage 575
- 6.4 Flash Storage 580
- 6.5 Connecting Processors, Memory, and I/O Devices 582
- 6.6 Interfacing I/O Devices to the Processor, Memory, and Operating System 586
- 6.7 I/O Performance Measures: Examples from Disk and File Systems 596
- 6.8 Designing an I/O System 598
- 6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 599
- 6.10 Real Stuff: Sun Fire x4150 Server 606
- 6.11 Advanced Topics: Networks 612
- 6.12 Fallacies and Pitfalls 613
- 6.13 Concluding Remarks 617
- 6.14 Historical Perspective and Further Reading 618
 - 6.15 Exercises 619

7

 \odot

 \odot

 (\circ)

 \odot

Multicores, Multiprocessors, and Clusters 630

- 7.1 Introduction 632
- 7.2 The Difficulty of Creating Parallel Processing Programs 634
- 7.3 Shared Memory Multiprocessors 638

 (\circ)

٢

B

- 7.4 Clusters and Other Message-Passing Multiprocessors 641
- 7.5 Hardware Multithreading 645
- 7.6 SISD, MIMD, SIMD, SPMD, and Vector 648
- 7.7 Introduction to Graphics Processing Units 654
- 7.8 Introduction to Multiprocessor Network Topologies 660
- 7.9 Multiprocessor Benchmarks 664
- 7.10 Roofline: A Simple Performance Model 667
- 7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 675
- 7.12 Fallacies and Pitfalls 684
- 7.13 Concluding Remarks 686
- 7.14 Historical Perspective and Further Reading 688
 - 7.15 Exercises 688

APPENDICES

Graphics and Computing GPUs A-2

- A.1 Introduction A-3
- A.2 GPU System Architectures A-7
- A.3 Programming GPUs A-12
- A.4 Multithreaded Multiprocessor Architecture A-25
- A.5 Parallel Memory System A-36
- A.6 Floating Point Arithmetic A-41
- A.7 Real Stuff: The NVIDIA GeForce 8800 A-46
- A.8 Real Stuff: Mapping Applications to GPUs A-55
- A.9 Fallacies and Pitfalls A-72
- A.10 Concluding Remarks A-76
- A.11 Historical Perspective and Further Reading A-77

Assemblers, Linkers, and the SPIM Simulator B-2

- B.1 Introduction B-3
- B.2 Assemblers B-10
- B.3 Linkers B-18
- B.4 Loading B-19
- B.5 Memory Usage B-20
- B.6 Procedure Call Convention B-22
- B.7 Exceptions and Interrupts B-33
- B.8 Input and Output B-38
- B.9 SPIM B-40

- B.10 MIPS R2000 Assembly Language B-45
- B.11 Concluding Remarks B-81
- B.12 Exercises B-82

Index I-1

CD-ROM CONTENT

The Basics of Logic Design C-2

- C.1 Introduction C-3
- C.2 Gates, Truth Tables, and Logic Equations C-4
- C.3 Combinational Logic C-9
- C.4 Using a Hardware Description Language C-20
- C.5 Constructing a Basic Arithmetic Logic Unit C-26
- C.6 Faster Addition: Carry Lookahead C-38
- C.7 Clocks C-48
- C.8 Memory Elements: Flip-Flops, Latches, and Registers C-50
- C.9 Memory Elements: SRAMs and DRAMs C-58
- C.10 Finite-State Machines C-67
- C.11 Timing Methodologies C-72
- C.12 Field Programmable Devices C-78
- C.13 Concluding Remarks C-79
- C.14 Exercises C-80

Mapping Control to Hardware D-2

- D.1 Introduction D-3
- D.2 Implementing Combinational Control Units D-4
- D.3 Implementing Finite-State Machine Control D-8
- D.4 Implementing the Next-State Function with a Sequencer D-22
- D.5 Translating a Microprogram to Hardware D-28
- D.6 Concluding Remarks D-32
- D.7 Exercises D-33

- E.1 Introduction E-3
- E.2 Addressing Modes and Instruction Formats E-5
- E.3 Instructions: The MIPS Core Subset E-9

- E.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs E-16
- E.5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs E-19
- E.6 Instructions: Common Extensions to MIPS Core E-20
- E.7 Instructions Unique to MIPS-64 E-25
- E.8 Instructions Unique to Alpha E-27
- E.9 Instructions Unique to SPARC v.9 E-29
- E.10 Instructions Unique to PowerPC E-32
- E.11 Instructions Unique to PA-RISC 2.0 E-34
- E.12 Instructions Unique to ARM E-36
- E.13 Instructions Unique to Thumb E-38
- E.14 Instructions Unique to SuperH E-39
- E.15 Instructions Unique to M32R E-40
- E.16 Instructions Unique to MIPS-16 E-40
- E.17 Concluding Remarks E-43
- Glossary G-1
- Further Reading FR-1