Contents

1	Intr	oduction	1
\mathbf{Re}	feren	ces	11
2	\mathbf{Seq}	uential decision models	15
	2.1	Exploitation of an exhaustible resource	16
	2.2	Assessment and management of a renewable resource	17
	2.3	Mitigation policies for carbon dioxyde emissions	24
	2.4	A trophic web and sustainable use values	27
	2.5	A forestry management model	29
	2.6	A single species age-classified model of fishing	31
	2.7	Economic growth with an exhaustible natural resource	35
	2.8	An exploited metapopulation and protected area	37
	2.9	State space mathematical formulation	38
	2.10	Open versus closed loop decisions	44
	2.11	Decision tree and the "curse of the dimensionality"	46
Re	feren	ces	47
3	Equ	ilibrium and stability	51
	3.1^{-1}	Equilibrium states and decisions	
	3.2	Some examples of equilibria	
	3.3	Maximum sustainable yield, private property, common	
		property, open access equilibria	55
	3.4	Stability of a stationary open loop equilibrium state	60
	3.5	What about stability for MSE, PPE and CPE?	63
	3.6	Open access, instability and extinction	66
	3.7	Competition for a resource: coexistence vs exclusion	68
Re	feren	ces	71

4	Vial	ble sequential decisions	. 73
	4.1	The viability problem	
	4.2	Resource management examples under viability constraints	. 76
	4.3	The viability kernel	. 80
	4.4	Viability in the autonomous case	. 83
	4.5	Viable control of an invasive species	. 86
	4.6	Viable greenhouse gas mitigation	. 89
	4.7	A bioeconomic precautionary threshold	. 90
	4.8	The precautionary approach in fisheries management	
	4.9	Viable forestry management	
	4.10	Invariance or strong viability	. 100
Ref	eren	ces	. 105
-	<u> </u>	· · · · · · · · · · · · · · · · · · ·	107
5	_	imal sequential decisions	
	5.1	Problem formulation	
	5.2	Dynamic programming for the additive payoff case	
	5.3	Intergenerational equity for a renewable resource	
	5.4	Optimal depletion of an exhaustible resource	
	5.5	Over-exploitation, extinction and inequity	
	5.6	A cost-effective approach to CO_2 mitigation	
	5.7	Discount factor and extraction path of an open pit mine	
	5.8	Pontryaguin's maximum principle for the additive case	
	5.9	Hotelling rule	
		Optimal management of a renewable resource	
		The Green Golden rule approach	
		Where conservation is optimal	
		Chichilnisky approach for exhaustible resources	
		The "maximin" approach	
	5.15	Maximin for an exhaustible resource	. 148
Ref	eren	ces	. 151
6	Sequ	uential decisions under uncertainty	. 153
	6.1	Uncertain dynamic control system	
	6.2	Decisions, solution map and feedback strategies	
	6.3	Probabilistic assumptions and expected value	
	6.4	Decision criteria under uncertainty	
	6.5	Management of multi-species harvests	
	6.6	Robust agricultural land-use and diversification	
	6.7	Mitigation policies for uncertain carbon dioxyde emissions	
	6.8	Economic growth with an exhaustible natural resource	
		ces	

7	Robust and stochastic viability					
	7.1	The uncertain viability problem				
	7.2	The robust viability problem				
	7.3	Robust agricultural land-use and diversification				
	7.4	Sustainable management of marine ecosystems through				
		protected areas: a coral reef case study				
	7.5	The stochastic viability problem				
	7.6	From PVA to CVA				
References						
8	Rob	oust and stochastic optimization				
	8.1	Dynamics, constraints, feedbacks and criteria				
	8.2	The robust optimality problem				
	8.3	The robust additive payoff case				
	8.4	Robust harvest of a renewable resource over two periods 199				
	8.5	The robust "maximin" approach				
	8.6	The stochastic optimality problem				
	8.7	Stochastic management of a renewable resource				
	8.8	Optimal expected land-use and specialization				
	8.9	Cost-effectiveness of grazing and bird community				
		management in farmland				
Re	feren	nces				
9	\mathbf{Seq}	uential decision under imperfect information				
	9.1	Intertemporal decision problem with imperfect observation221				
	9.2	Value of information				
	9.3	Precautionary catches				
	9.4	Information effect in climate change mitigation				
	9.5	Monotone variation of the value of information and				
		precautionary effect				
	9.6	Precautionary effect in climate change mitigation				
\mathbf{Re}	feren	ces				
Α	App	pendix. Mathematical Proofs				
		Mathematical proofs of Chap. 3				
	A.2					
		Mathematical proofs of Chap. 5				
	A.4	Robust and stochastic dynamic programming equations 248				
	A.5	Mathematical proofs of Chap. 7				
	A.6	Mathematical proofs of Chap. 8				
	A.7	Mathematical proofs of Chap. 9				
References						
Index						
Index						

ł

1