Contents

Part I Introduction to neural networks 1			
1 Ge	neral introduction	3	
1.	1 Principles of neural information processing	3	
1.	2 Biological neurons and model neurons	7	
1.	3 Universality of McCulloch–Pitts neurons	21	
1.	4 Exercises	25	
2 La	yered networks	29	
2.	1 Linear separability	29	
2.	2 Multilayer networks	33	
2.	3 The perceptron	36	
2.	4 Learning in layered networks: error backpropagation	46	
2.	5 Learning dynamics in small learning rate perceptrons	52	
2.	6 Numerical simulations	58	
2.	7 Exercises	64	
3 Re	current networks with binary neurons	69	
3.	1 Noiseless recurrent networks	70	
3.	2 Synaptic symmetry and Lyapunov functions	77	
3.	3 Information processing in recurrent networks	81	
3.	4 Exercises	87	
4 No	tes and suggestions for further reading	89	
Part I	Advanced neural networks	93	
5 _. Co	mpetitive unsupervised learning processes	95	
5.	1 Vector quantization	95	
5.	2 Soft vector quantization	98	

	5.3	Time-dependent learning rates	110
	5.4	Self-organizing maps	114
	5.5	Exercises	122
6	Bayes	ian techniques in supervised learning	127
in an	6.1	Preliminaries and introduction	127
	6.2	Bayesian learning of network weights	136
	6.3	Predictions with error bars: real-valued functions	144
	6.4	Predictions with error bars: binary classification	152
	6.5	Bayesian model selection	156
	6.6	Practicalities: measuring curvature	163
	6.7	Exercises	164
7	Gauss	ian processes	169
	7.1	The underlying idea	169
	7.2	Examples of networks reducing to Gaussian processes	172
	7.3	The 'priors over functions' point of view	176
	7.4	Stationary covariance functions	177
	7.5	Learning and prediction with Gaussian processes	180
	7.6	Exercises	182
8	Suppo	ort vector machines for binary classification	185
	8.1	Optimal separating plane for linearly separable tasks	185
	8.2	Representation in terms of support vectors	189
	8.3	Preprocessing and SVM kernels	197
	8.4	Exercises	202
9	Notes	and suggestions for further reading	205
Pa	art III	Information theory and neural networks	207
10	D Meas	uring information	209
	10.1	Brute force: counting messages	209
	10.2	Exploiting message likelihood differences via coding	212
	10.3	Proposal for a measure of information	218

11	Identi	fication of entropy as an information measure	223
	11.1	Coding theory and the Kraft inequality	223
	11.2	Entropy and optimal coding	229
	11.3	Shannon's original proof	233
12	Buildi	ng blocks of Shannon's information theory	235
	12.1	Entropy	235
	12.2	Joint and conditional entropy	240
	12.3	Relative entropy and mutual information	245
	12.4	Information measures for continuous random variables	251
	12.5	Exercises	258
13	Inforr	nation theory and statistical inference	261
- 2.7	13.1	Maximum likelihood estimation	261
	13.2	The maximum entropy principle	264
	13.3	Exercises	270
14	Appli	cations to neural networks	273
· .	14.1	Supervised learning: Boltzmann machines	273
	14.2	Maximum information preservation	281
	14.3	Neuronal specialization	285
	14.4	Detection of coherent features	294
	14.5	The effect of non-linearities	297
	14.6	Introduction to Amari's information geometry	299
	14.7	Simple applications of information geometry	306
	14.8	Exercises	311
15	Notes	and suggestions for further reading	313
Pa	rt IV	Macroscopic analysis of dynamics	315
16	Netw	ork operation: macroscopic dynamics	317
	16.1	Microscopic dynamics in probabilistic form	318
	16.2	Sequential dynamics	324
	16.3	Parallel dynamics	338
	16.4	Exercises	345

17	Dynan	nics of online learning in binary perceptrons	349
	17.1	Probabilistic definitions, performance measures	349
	17.2	Explicit learning rules	353
	17.3	Optimized learning rules	368
	17.4	Exercises	382
18	Dynan	nics of online gradient descent learning	385
	18.1	Online gradient descent	385
	18.2	Learning from noisy examples	392
	18.3	Exercises	394
19	Notes	and suggestions for further reading	397
Par	rtV I	Equilibrium statistical mechanics of neural networks	399
20	Basics	of equilibrium statistical mechanics	401
instantions.	20.1	Stationary distributions and ergodicity	401
	20.2	Detailed balance and interaction symmetry	408
	20.3	Equilibrium statistical mechanics: concepts, definitions	413
	20.4	A simple example: storing a single pattern	419
	20.5	Phase transitions and ergodicity breaking	425
	20.6	Exercises	430
21	Netwo	ork operation: equilibrium analysis	437
	21.1	Hopfield model with finite number of patterns	438
	21.2	Introduction to replica theory: the SK model	447
	21.3	Hopfield model with an extensive number of patterns	460
	21.4	Exercises	480
22	Gardn	er theory of task realizability	489
	22.1	The space of interactions	489
	22.2	Capacity of perceptrons—definition and toy example	494
	22.3	Capacity of perceptrons—random inputs	498
23	Notes	and suggestions for further reading	507

Appendix A: Probability theory in a nutshell		511
A.1	Discrete event sets	511
A.2	Continuous event sets	513
A.3	Averages of specific random variables	515
Appendi	x B: Conditions for the central limit theorem to apply	517
B.1	Moment condition	517
B.2	Lindeberg's theorem	518
Appendi	x C: Some simple summation identities	521
Appendi	x D: Gaussian integrals and probability distributions	523
D.1	General properties of Gaussian integrals	523
D.2	Gaussian probability distributions	527
D.3	A list of specific Gaussian integrals	531
Appendi	x E: Matrix identities	537
E.1	Block inverses	537
E.2	The Woodbury formula	538
Appendi	x F: The δ-distribution	539
F.1	Definition	539
F.2	$\delta(x)$ as solution of the Liouville equation	540
F.3	Representations, relations, and generalizations	541
Appendi	x G: Inequalities based on convexity	543
Appendi	x H: Metrics for parametrized probability distributions	549
H.1	Local distance definitions	549
H.2	The triangular inequality	550
H.3	Global distance definitions	551

Appendix I: Saddle-point integration	
References	555
Index	563