Inhaltsverzeichnis

1.	Einleitung	1
2	Generelle Anmerkungen zu den	
	Faserverbundwerkstoffen	8
2.1	Marktbetrachtung/-verteilung	14
2.2	Fertigungstechnische Aspekte und	
	Umweltgesichtspunkte	19
3.	Kurze Beschreibung der Fertigungsverfahren	24
3.1	Manuelles Naßlaminierverfahren	25
3.2	Naßwickelverfahren	26
3.3	Resin Transfer Mouldingverfahren (RTM)	28
3.4	Reaction Injection Moulding-Verfahren (RIM)	29
3.5	Faser/Harz-Spritzen	30
3.6	Vakuumsack- und Drucksackerverfahren	32
3.7	Prepreg-Niederdruckautoklavverfahren	33
3.8	Preßverfahren	35
3.8.1	Naßpreßverfahren	37
3.8.2	Sheet-Moulding-Compound-Verfahren (SMC)	37
3.8.3	Das Taktpreßverfahren	38
3.8.4	Das Diaphragma-Verfahren	39
3.9	Sonderverfahren zur Herstellung von hohlen	
	Faserverbundbauteilen	40
4.	Halbzeuge und Formen von Verstärkungsfasern	47
4.1	Lieferformen von Verstärkungsfasern	47
4.1.1	Garne	47
4.1.2	Zwirne	47
4.1.3	Rovings oder Tows	48
4.1.4	Sondergarne (comingled yarn)	48
4.1.5	Ummantelter Roving	49
4.1.6	Geschnittene oder gemahlene Kurzfasern	50
4.1.7	Geschnittenes Textilglas/Glasflocken	5
4.2	Ungerichtete flächige Halbzeuge	51
4.2.1	Schnittmatten	5
4.2.2	Vliese, Oberflächenvliese	52
4.2.3	Endlosmatten	54
4.3	Gerichtete flächige Halbzeuge	54
4.3.1	Gerichtete Kurzfasergelege	54
4.3.2	Unidirektionale Fasergelege	54
4.3.3	Multiaxialgelege	50
4.3.4	Fasergewebe	5
4341	Gewebe mit Leinwandbindung	59

4.3.4.2	Gewebe mit Köperbindung
4.3.4.3	Satin- oder Atlasgewebe
4.3.4.4	Gewebe mit Scheindreherbindung
4.3.4.5	Triaxiale Gewebe
4.3.4.6	Kettverstärkte Gewebe
4.3.4.7	Misch- oder Hybridgewebe
4.3.4.8	Gittergewebe
4.3.4.9	2,5-dimensionale Gewebe
4.3.4.10	Dreidimensionale Gewebe
4.3.4.11	Zusammenfassung für Gewebe
4.4	Fasergeflechte
4.5	Maschenware
4.5.1	Textile Eigenschaften von Gestricken
4.5.2	Stricktechniken
4.6	Sonderformen von Verstärkungsmaterialien
4.6.1	Hohlfasern
4.6.2	Mikrohohlglaskugeln
4.6.3	Mikroglaskugeln
5.	Imprägnierte Harze
5.1	Prepregs mit duroplastischer Matrix
5.1.1	Lösungsmittelimprägnierung
5.1.2	Schmelzharzimprägnierung
5.1.3	Verfahrensvergleich
5.1.4	Verarbeitungshinweise
5.1.5	Aspekte der Prepregauswahl unter Einsatzbedingungen
5.2	Halbzeuge mit thermoplastischer Matrix
5.2.1	Prepregherstellung
5.2.2	Prepreggelege aus thermoplastischen Prepregs
0.2.2	(organische Bleche)
5.2.3	Prepreggelege aus thermoplastischen Matrices nach der
5.2.5	Filmstacking-Methode
5.2.4	Halbzeuge mit textilen Matrixsystemen
5.2.4	Vergleichende Betrachtung von thermoplastischen
0.0	und duroplastischen Halbzeugen
5.4	Preformlinge
5.4.1	Preformlinge aus textilen Fasergebilden
5.4.1 5.4.2	Preformlinge aus textnen Pasergeonden
5.4.2 5.5	
5.5.1	Pultrierte Halbzeuge
J.J.1	Beschreibung einer Horizontal-Standard-Strangzieh-
550	maschine
5.5.2	Beschreibung einer Strangziehmaschine zur Herstellung
E E O	von Hohlprofilen
5.5.3	Herstellung stranggezogener Profile aus faserverstärkten
5501	Thermoplasten
5.5.3.1	Stranggezogene Profile aus Kohlenstoffasern und
	Polyetheretherketon (PEEK)

5.5.3.2	Stranggezogene Profile aus E-Glasfasern und
	Polypropylen
5.5.4	Zusammenfassung
6.	Bauweisen
6.1	Definition der Bauweisen
6.1.2	Die Integralbauweise
6.1.3	Mischbauweisen
6.2	Beispiele von komplexen Strukturen aus Mischbau- weisen
6.2.1	Höhenleitwerk Alpha-Jet
6.2.2	CFK-Flügel Alpha-Jet
6.2.3	Heckpartie des Commuterflugzeuges Do 328 aus CFK
6.2.4.	CFK-Rumpfsektion eines Commuterflugzeuges
0.2.4.	(Experimentalbauteil)
6.2.5	Äußere CFK-Landeklappe des Airbus A320
6.2.6	Querruder des Commuterflugzeuges Do 328 in Faserver-
0.2.0	bundbauweise
6.3	Beispiele von komplexen Strukturen in Sandwichbau-
	weise
	** CASC
6.3.1	CFK-Seitenruder des Alpha-Jet in differenzierter
0.5.1	Sandwichbauweise
6.3.2	CFK-Taileron für das Kampfflugzeug Tornado in
0.3.2	differenzierter Sandwichbauweise
6.3.3	Reise- und Geschäftsflugzeug Starship 1 von Beech-
	Aircraft in CFK-in-situ-Sandwichbauweise
6.3.4	Bahnwaggon in Integralsandwichbauweise aus GFK
0.5.7	Dumwaggon in integration.
6.3.5	TGV-Doppelstockwaggon aus CFK
6.3.6	Omnibusstruktur aus Faserverbundwerkstoffen
6.3.7	Fahrradrahmen in Faserverbundsandwichbauweise
6.4	Bewertung der Bauweisen
6.4.1	Chancen von Hochleistungsfaserverbunden im "low-
0.4.1	cost"-Bereich
6.4.1.1	Gegenüberstellung der Kostenträger der Herstellkosten
0.7.1.1	von CFK-Strukturen von Flugzeugen und Fahrzeugen
	von et kaphuktaton von Hagaaagen and Lammas agen
6.4.1.2	Anmerkungen zum Serieneinsatz von Strukturbauteilen
0.7.1.2	von Transportsystemen aus Faserverbundbauteilen
6.5	Zusammenfassung
Und	Zusammoniassung
	Literaturverzeichnis
	Sachwortverzeichnis
	Abkürzungen
	LANGERS STREET TO