Preface

This volume contains the courses delivered at the CIME meeting
“Pseudo-differential Operators, Quantization and Signals” held in Cetraro,
Italy, from June 19, 2006 to June 24, 2006 and includes the courses by
H.-G. Feichtinger presenting new results for Gabor multipliers on modula-
tion and Wiener amalgam spaces, by B. Helffer analyzing non-self-adjoint
operators using microlocal techniques, by M. Lamoureux addressing ap-
plications of pseudo-differential operators in geophysics, and by N. Lerner
applying the techniques of Wick quantization to problems on subellipticity
and lower bounds. The lectures by J. Toft on Schatten—von Neumann classes
of Weyl pseudo-differential operators are also included.

This introduction is written for non-specialists. We first recall the basic
notions and give an account of some developments of pseudo-differential
operators. Our starting point is the class of pseudo-differential operators
studied in the 1965 seminal paper of Kohn and Nirenberg published in
“Communications on Pure and Applied Mathematics.” Then we give a
brief overview of several pre-eminent ancestors and successors in the study
of pseudo-differential operators before and after the Kohn—Nirenberg mile-
stone. The connections with quantization envisaged by Hermann Weyl in
his classic “Group Theory and Quantum Mechanics,” first observed by
Grossmann, Loupias and Stein in the 1968 paper “Annales de l'Institute
Fourier (Grenoble),” will then be described in the context of Wigner trans-
forms. These connections give new insights into the role of pseudo-differential
operators in the analysis of signals and images in the perspectives of Gabor
transforms and wavelet transforms. From these come the Stockwell transform
that has numerous applications in geophysics and medical imaging. The re-
cently developed mathematical underpinnings of the Stockwell transform will
be highlighted.

1. Pseudo-differential Operators

The starting point is the class of classical pseudo-differential operators in-
troduced by Kohn and Nirenberg [19] and modified almost immediately by
Hormander [16] about 40 years ago. To wit, let m € R. Then we let S, or

v



vi Preface

simply S™ be the set of all C'*™ functions ¢ on R™ x R™ such that for all
multi-indices o and 3, there exists a positive constant C, g for which

(D2 DLo)(@,6)| < Cap(1 +[¢)™ 17!

for all z and £ in R™. A function ¢ in S™ is called a symbol of order m.
Let ¢ € S™. Then we define the pseudo-differential operator T, on the
Schwartz space S(R™) by

(Top) (@) = (2m) ™2 / e o (2, €)p(€) de

n

for all ¢ in S(R™) and all z in R™, where

b = @0 [ o) da
for all £ in R™. Tt is easy to prove that T, maps S(R™) into S(R") con-
tinuously. The most fundamental properties of pseudo-differential operators
which are useful in the study of partial differential equations are listed as
Theorems 1.1-1.3.

Theorem 1.1. Let 0 € S°. Then T,, initially defined on S(R™), can be
uniquely extended to a bounded linear operator from L*(R™) into L*(R™).

Theorem 1.2. If 0 € S™, then T} =T,, where T € S™ and

(_i)lul B
T~y Ok,
1

Here, T is the formal adjoint of T,.
To recall, the formal adjoint T} of T}, is defined by

(Top, V) r2@n) = (0, T5¥)L2(mn)

for all ¢ and 7 in L?(R™), where (, )r2(rn) is the inner product in L?(R").

—iylul
The asymptotic expansion 7~ - ( ;)1 - 8562‘ o means that

—5)lel
T i Z)! T e s
[p|<N

for all positive integers V.

Theorem 1.3. If 0 € S™ and 7 € S™2, then T, T, = T\, where A\ € S™1Tm2
and
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The asymptotic expansion

—)lul
A~y ( M)! (0a)(947)

means that

_i)lul
A— S EO royanr) € smatma
[p|<N ’

for all positive integers N.

All these results are very well known and can be found in the books [17]
by Hormander [20] by Kumano-go, [23] by Rodino, [29] by Wong and
many others. We can see variants of these results in other settings in this
presentation.

2. Ancestors and Successors

Earliest sources of pseudo-differential operators can be traced to problems
for n-dimensional singular integral equations. The first contributions to the
theory of multi-dimensional singular integrals appear to be those of Tricomi
[27] in 1928. To recall, let (r,0) be the polar coordinates of a generic point
y = (y1,y2) in R? and define for suitable functions ¢ on R?,

(o)

(Pp)(z) = lim 2

e—0

o(x—y)dy, =eR.
r>¢€

In general, the integral ng hﬁf )cp(x — y) dy is not absolutely convergent, but

under the so-called Tricomi condition stipulating that

2m
(0)dod =0
0
and appropriate assumptions on h and ¢, the limit exists and (Py)(x) is
well defined for almost all z in R2. If we assume for simplicity that h is C™
on the unit circle S with center at the origin, then P is a bounded linear
operator from L?(R?) into L?(R?). Despite unsuccessful attempts by Tricomi
in solving the equation
Py =1

by finding another singular integral operator P~ for which
Plp=1

and
pPp~t=1,
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where I is the identity operator, we all know nowadays that this can be done
using the Fourier transform. Indeed, P can be regarded as the convolution
operator given by

Py =K *p,

where the singular kernel K given by

K(y) = =5 y=(r,0) € R?

has to be suitably seen as a tempered distribution on R2. Applying the Fourier
transform, we get

(Pe)"(€) = a(&)@(€), & €R,

where R
o(¢) = 21K (£), ¢eR%

In view of the Tricomi condition on h € C°°(S!), o turns out to be C* and
homogeneous of degree 0 on R? \ {0}. Hence, apart from the singularity at
the origin, ¢ is a symbol in S° depending on ¢ only, and with the notation
of the preceding section,

P=T,.

Furthermore, if ¢ is elliptic in the sense that there exists a positive constant
C such that
0§ >C, ¢eR?

then 0~ € S° and we can define P~! to be T, 1. Such applications of the
Fourier transform were not known to Tricomi and it took almost 30 years
for mathematicians to come to these simple conclusions. Milestones of the
developments in this direction are the works of Giraud [13] in 1934, Calderén
and Zygmund [4] in 1952 and Mihlin [21] in 1965. Additional references can
be found in the introduction of [21] and the survey paper [24] of Seeley. In
fact, the analysis has been extended to the case when h also depends on z,
i.e., the kernel K is a function of z and y given by

h(z,0)

r2

K(.L“,y) =

)

where y = (r,6). In the final formulation of these results in the setting of R™,
the symbol o € S° is the Fourier transform with respect to y of the kernel
K (x,y) in terms of the singular integral given by

o(z,&) = lim e WEK (x,y)dy, x,& €R™.
c70Jlyl>e

If o is elliptic in the sense that there exists a positive constant C' such that

lo(z,8)| = C, xR,
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then we still have
o teso.

However, it is important to note that 7,1 is no longer the inverse of P in
this case. But, as in Theorem 1.3, we obtain

T,..P=1+K;

and
Pl =1+ K>,

where K; and K> are pseudo-differential operators of order —1. When we
transfer the definition of P to a compact manifold M, the operators K; and
K5 are compact and P is then a Fredholm operator on L?(M). It is remark-
able to note that this very rudimentary symbolic calculus with remainders
of order —1 plays an important role in the proof of the Atiyah—Singer index
formula in [1].

In addition to the obvious extension to an arbitrary order m € R, the most
novel ideas of the Kohn—Nirenberg paper [19] in the context of the theory
of singular integral operators are the precise asymptotic formulas articulated
in Theorems 1.2 and 1.3. Almost immediately after the appearance of the
work of Kohn and Nirenberg is the far-reaching calculus of Hérmander [16]
concerning symbols o of type (p,d), 0 < § < p < 1. Let us recall that a
function o in C*°(R™ x R™) is a symbol of order m € R and type (p, d) if for
all multi-indices o and 3, there exists a positive constant C,, g such that

(D3 Do) (@, €)] < Ca(1 + [¢])m—P11+01e]

for all x and £ in R™. Since then, other generalizations and variants of pseudo-
differential operators have appeared. Among many interesting classes is the
very general class of pseudo-differential operators developed by Beals [2] in
1975 in which the Hormander estimates are replaced by

(Dg D{o)(w,€)| < Caph(w, )T (x, &) b, €)1
for all x and £ in R™, where

W(l',f) = (%(m,f),%(m,f), R ,@n($7§))

and
@(SL’,E) = (@1($7f),¢2<$,§), s aén(%@)

are n-tuples of suitable weight functions, and A(x, ) is now the “order” of the
corresponding pseudo-differential operator. Recasting the calculus of Beals,
another achievement is due to Hormander [16] using the Weyl expression for
pseudo-differential operators. We refer the readers to [16] for a wide range
of applications to linear partial differential equations. Weyl quantization is
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described in the next section, and for the sake of simplicity, we begin with
a motivation based on symbols in S™, i.e., Hormander symbols with p =1
and § = 0.

3. Weyl Transforms

Let 0 € §™. Then we can associate to it the pseudo-differential operator T,
but T, is not the only operator that can be assigned to o. To see what else
can be done, let us note that for all ¢ in S(R™) and all z in R,

(To0)(x) = (2m) /2 / ¢S, €)p(E) de

R™

—em [ [ e ) dy e,

where the last integral is to be understood as an oscillatory integral in which
the integral with respect to y has to be performed first. With this formula in
hand, it requires a huge amount of ingenuity (certainly not logic) to see that
we can associate to o another useful linear operator W, on S defined by the
same formula with o(z, &) replaced by o (£3%,¢) . The linear operator W,
can be traced back to the work [28] by Hermann Weyl and hence we call W,
the Weyl transform associated to the symbol o. In fact, we have the following

connection between Weyl transforms and pseudo-differential operators.

Theorem 3.1. Let o € S™. Then there exists a symbol T in S™ such that
T, =W,

and there ezists a symbol k in S™ such that
Wy =T,.

Thus, there is a one-to-one correspondence between pseudo-differential op-

erators and Weyl transforms. We have the following result, which can be
thought of as the fundamental Theorem of pseudo-differential operators.

Theorem 3.2. Let 0 € S™, m € R. Then for all ¢ and ¥ in S(R™),

Wap D)y = @m) "2 [ [ ala, W (o, 0)(@.¢) dude,

where W (p, ) is the Wigner transform of ¢ and ¢ defined by

(o D)ol D

n

W (i, ) (2, €) = (2m) "2 /

for all x and & in R™.
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The Wigner transform is a very well-behaved bilinear form on L?(R™) x
L?(R™) and it satisfies the so-called Moyal identity or the Plancherel formula
to the effect that

W (@, ¥)llL2®2ny = llellL2@n) 191 L2 @)

for all ¢ and v in L?(R™).

A tour de force from Theorems 3.1 and 3.2 shows that we can now define
pseudo-differential operators with nonsmooth symbols not in the Hérmander
class S™. To be specific, we look at symbols in L?(R™ x R") only.

Let 0 € L?(R"™ x R™). Then we define the Weyl transform W, on L?(R™) by

(ng, g)Lz(R") = (27T)_n/2/ / 0($7£) W(f7g)($,§) dl’df
for all f and g in L?(R"). Then we have the following analogs of Theo-
rems 1.1-1.3.

Theorem 3.3. Let 0 € L*(R™ x R™). Then W, : L*(R") — L*(R") is a
Hilbert—Schmidt operator.

Theorem 3.4. Let 0 € L?(R" x R"). Then the adjoint W* of W, is given by
Theorem 3.5. Let o and T be symbols in L2(R™ x R™). Then

WoW, = W)\v
where A € L>(R™ x R™) and is given by

A= (2m)""(G %14 T).

Theorem 3.5, which is attributed to Grossmann, Loupias and Stein [15], tells
us that the product of two Weyl transforms with symbols in L?(R" x R")
is again a Weyl transform with symbol in L?(R" x R") and is given by a
twisted convolution. Let us recall that the twisted convolution f ;4 g of two
measurable functions f and g on C"(= R™ x R") is defined by

(f *1/4 g)(z) = - f(z _ w)g(w)ei[Z,w]/4dw

for all z in C™, where [z, w] is the symplectic form of z and w given by

[z,w] = 2Im(z - W).
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See the books [3] by Boggiatto, Buzano and Rodino, [12] by Folland, [25] by
Stein and [30] by Wong for details and related topics.

4. Gabor Transforms
If we make a change of variables in the definition of the Wigner transform,
then we get for all f and g in L?(R"), and all x and ¢ in R™,

W (f, 9)(x, &) = 2"e** (G f) (22, 2€),

where

g(x) = g(—x)
for all z in R and G f is the well-known Gabor transform or the short-time
Fourier transform of f with window g given by

(Ga) (. €) = (2m) "2 / e F(0)5(E — o) dt

n

for all z and £ in R™. In image analysis, we can think of (G f)(x,&) as the
spectral content of the image f with frequency £ at the point z.

Let us now fix a window ¢ in L'(R") N L*(R") with [;, ¢(z)dx = 1. Then
the Gabor transform G f of f is given by

(thf)(x7 g) = (27T)_n/2(f7 MﬁT—wQD)LQ(R”)

for all x and £ in R", where M, and T_, are the modulation operator and
the translation operator given by

(Meh)(t) = e™h(t)
and
(T_oh)(t) = h(t - 2)
for all measurable functions h on R™ and all ¢ in R™. Now, for all x and £ in
R"™, we define the function ¢, ¢ on R" by
P& = MgT,x(p.

We call the functions ¢, ¢, z,£ € R", the Gabor wavelets generated from the
Gabor mother wavelet ¢ by translations and modulations.

The usefulness of the Gabor wavelets in signal and image analysis is en-
hanced by the following resolution of the identity formula, which allows the
reconstruction of a signal or an image from its Gabor spectrum.

Theorem 4.1. For all f in L?(R"),

f= (QW)_"/n /n(f, o) L2 (R) P, cdx dE.
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Let 0 € L*(R"™ x R™). Then we define the Gabor multiplier G, : L*(R™) —
L2(R") by

(G )iy = [ [ 0@ O(GCaf) e, Go)(w:€) dode

for all f and g in L*(R™). Using the Gabor wavelets, we see that G, f is
equal to

e [ [ 0O er e pae dode

for all f in L?(R™).

Gabor multipliers are also known as localization operators, Daubechies oper-
ators, anti-Wick quantization and Wick quantization. The following results
are the analogs of Theorems 1.1-1.3 for Gabor multipliers.

Theorem 4.2. Let 0 € L*(R" x R™). Then the Gabor multiplier G, , :
L?(R™) — L%(R"™) is a Hilbert-Schmidt operator.

Theorem 4.3. Let 0 € L*(R" x R"). Then the adjoint G, , of Gg is
given by

* —
G, = Gop.

Theorem 4.4. Let 0 and T be functions in L*(R™ x R™). Then
GO’,LpGT,Lp = G/\,cpa

where

A= (2m)""(6 %% 7).

In Theorem 4.4, we have a new twisted convolution. To wit, the new twisted
convolution f *'/2 g of two measurable functions f and g on C, is defined
by

(£ 9)(2) = [ Sz =w) glw)el= ™D dw

for all z in C™ provided that the integral exists. Theorem 4.4 can be found
in the 2000 paper [10] by Du and Wong.

The interesting feature with Theorem 4.4 is that the new twisted convolution
f*/2 g of two functions f and g in L?(R™ x R™) need not be in L?(R™ x R™).
This phenomenon is the motivation for many interesting research papers on
the product of Gabor multipliers. It suffices to mention the works [5] by
Coburn, [7] by Cordero and Grochenig and [8] by Cordero and Rodino.
What is a Gabor multiplier? Is it something already well known to us? The
answer is yes.
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Theorem 4.5. Let o € L*>(R" x R"). Then

GW = WG*V(somo)v

where

Vip, )" = W(p, ).

References for the materials in this section are the books [9] by Daubechies,
[14] by Grochenig, [31] by Wong and many others.

5. Wavelet Transforms
Let ¢ € L*(R) be such that |||z = 1 and

166
/_oo g e

Then we call ¢ a mother wavelet and ¢ is said to satisfy the admissibility
condition.
Let ¢ be a mother wavelet. Then for all b in R and « in R\{0}, we can define

the wavelet ¢y q by
1 x—0b
Vo) = —0 () , z€eR.

\/m a

We call ¢y the affine wavelet generated from the mother wavelet ¢ by trans-
lation and dilation. To put things in perspective, let b € R and let a € R\{0}.
Then we let T}, be the translation operator as before and D, be the dilation

operator defined by
z) = /lalf(ax)

for all  in R and all measurable functions f on R. So, the wavelet ¢ , can
be expressed as

¥b,a = beDl/aS&

Let ¢ be a mother wavelet. Then the wavelet transform {2, f of a function f
in L?(R) is defined to be the function on R x R\{0} by

('Qsof) (ba a’) = (fa (pb,a)LQ(]R)

for all b in R and @ in R\{0}. At the heart of the analysis of the wavelet
transform is the following resolution of the identity formula.

Theorem 5.1. Let ¢ be a mother wavelet. Then for all functions f and g in

I2(R)
o == [ [ (@en0.0 @00 Tt
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_ > @)
%_QW/—OO €] dg.

where

The resolution of the identity formula leads to the reconstruction formula

which says that
1 [ [ dbda
[= */ / (fs Pba)L2(®)Poa—5—
Co J—o0J -0 a

for all f in L?(R). In other words, we have a reconstruction formula for the
signal f from a knowledge of its time-scale spectrum.

Let ¢ be a mother wavelet and let o € L?(R x R). Then we define the wavelet
multiplier 2, : L*(R) — L?(R) by

1 [ [°° dbda
-ch,npf = Cf / / U(bv a)(fa S0b7a)L2(R)SOb,a a2
p J—o00J—00

for all f in L?(R).
As in the case of the Gabor multipliers, we have the following results.

Theorem 5.2. The wavelet multiplier
Q0.+ L*(R) — L*(R)

is a Hilbert-Schmidt operator.
Theorem 5.3. The adjoint (27 , of the wavelet multiplier (25, is given by

* —
25 o= 5.

What is the product of two wavelet multipliers? The answer is not so simple
and seems to depend on the availability of a useful formula for a wavelet
multiplier. Some technical information in this direction can be found in the
paper [32] by Wong. If

(b, a) = a(a)B(b)

for all b in R and all a in R\{0}, then (2, ., is a paracommutator in the sense
of Janson and Peetre [18], and Peng and Wong [22]. If o is a function of a
only, then (2, is a paraproduct in the sense of Coifman and Meyer [6]. If &
is a function of b only, then (2, is a Fourier multiplier.

6. Stockwell Transforms

Let us recall that for a signal f in L?(R), the Gabor transform (G f)(x,&)
with respect to the window ¢ gives the time—frequency content of f at time
x and frequency £ by using the window ¢ at time z. The drawback here is
that a window of fixed width is used for all time z. It is more accurate if
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we can have an adaptive window that gives a wide window for low frequency
and a narrow window for high frequency. That this can be done comes from
our experiences with the wavelet transform. Indeed, we see that the window
©b,q is narrow if the scale @ is small and the window is wide when the scale
is big.

Now, the Stockwell transform S, f with window ¢ of a signal f is defined by

<5¢fv<x,5>::<2ﬂ»*1/ﬂs|j[%)e*iﬁjxt>w<s<t—»x>>dt

for all x and ¢ in R. Formally, we note that for all f in L?(R), all # in R and
all £ in R\{0},
(Siﬂf)(xa 5) = (f7 QOIVE)LZ(R%

where R
"¢ = (2m) V2 MeT_, Deep.

Here, the dilation operator bg is defined by

(Def)(t) = €] f(&t)

for all ¢t in R and all measurable functions f on R. Besides the modulation,
a notable feature in the Stockwell transform is the normalizing factor in
the dilation operator, which is | - | and not | - ['/? as in the case of the
wavelet transforms. These features distinguish the Stockwell transform from
the wavelet transforms.

The Stockwell transform has recently been successfully used in seismic waves
[26] by Stockwell, Mansinha and Lowe and in medical imaging [34] by Zhu
and others. An attempt in understanding the mathematical underpinnings
of the Stockwell transform is underway by Wong and Zhu. See [33] in this
direction and we describe some of the results therein.

Theorem 6.1. Let ¢ be a window with

/OO p(z)dx = 1.

— 00

Then for all f in L*(R) N L3(R),

| senmeds= e
for all £ in R.
See Fig. 1 for an illustration of Theorem 6.1. In view of Theorem 6.1, we have
a reconstruction formula for a signal f in terms of its Stockwell spectrum,
which says that

J=F1AS,f,
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(a) A Signal

Amplitude
—IA o = N

(c) Amplitude of its Stockwell Spectrum

o
&)

N
~

o
w

o
)

o
-

(b) Amplitude of its Fourier Spectrum
Frequency (Hz)

31 0 0 20 40 60 80 100 120
Time (s)

Fig. 1 Time—frequency representation of the Stockwell transform: (a) a signal consisting
of multiple frequency components (b) the amplitude of the corresponding Fourier spec-
trum, i.e., [(Ff)(k)| (c) the contour plotting the amplitude of the corresponding Stockwell
transform, i.e., |(Sf)(7, k)|

where F~! is the inverse Fourier transform and A is the time average operator
given by

e = [ Feoa

for all £ in R and all measurable functions F' on R x R.
For the second result, we let M be the set of all measurable functions F on

R x R such that
o0 [o ]
/ ‘/ F(x,§)dx
—oo [J —o0

Then M is an indefinite Hilbert space in which the indefinite inner product
(, )ar is given by

2
d¢ < o0.

(F,G)m = (AF, AG) 2(r)

for all ' and G in M.
Then we have a characterization of the Stockwell spectra given by the fol-

lowing theorem.

Theorem 6.2. {S,f: f € L*(R)} = M/Z, where

Z={F:RxR—C:AF =0}.
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Can we reconstruct a signal from its Stockwell spectrum? The answer is
yes provided that we choose the right window. To do this, we say that a
function ¢ in L?(R) satisfies the admissibility condition if and only if

(e = 1)
/,m g “e

For a function in L?(R) satisfying the admissibility condition, we define the

constant ¢, by
> e - 1))
Cp = ——d¢.
S Mt

Theorem 6.3. Let ¢ be a function in L?(R) with ||¢|l2 = 1 satisfying the
admissibility condition. Then for all f in L?(R),

1o odede
f= */ / (f, ") L2 ™" .
Co J-0J—0 €]

Remark: It is important to note that an admissible wavelet ¢ for the Stock-
well transform has to satisfy the condition

p(—1) =0,

So, the Gaussian window that has been used exclusively for the Stockwell
transform in the literature is not admissible.

This formula and its discretization can be found in the paper [11] by Du,
Wong and Zhu.

L. Rodino,
M.W. Wong
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