
Preface

This volume contains the courses delivered at the CIME meeting
“Pseudo-differential Operators, Quantization and Signals” held in Cetraro,
Italy, from June 19, 2006 to June 24, 2006 and includes the courses by
H.-G. Feichtinger presenting new results for Gabor multipliers on modula-
tion and Wiener amalgam spaces, by B. Helffer analyzing non-self-adjoint
operators using microlocal techniques, by M. Lamoureux addressing ap-
plications of pseudo-differential operators in geophysics, and by N. Lerner
applying the techniques of Wick quantization to problems on subellipticity
and lower bounds. The lectures by J. Toft on Schatten–von Neumann classes
of Weyl pseudo-differential operators are also included.

This introduction is written for non-specialists. We first recall the basic
notions and give an account of some developments of pseudo-differential
operators. Our starting point is the class of pseudo-differential operators
studied in the 1965 seminal paper of Kohn and Nirenberg published in
“Communications on Pure and Applied Mathematics.” Then we give a
brief overview of several pre-eminent ancestors and successors in the study
of pseudo-differential operators before and after the Kohn–Nirenberg mile-
stone. The connections with quantization envisaged by Hermann Weyl in
his classic “Group Theory and Quantum Mechanics,” first observed by
Grossmann, Loupias and Stein in the 1968 paper “Annales de l’Institute
Fourier (Grenoble),” will then be described in the context of Wigner trans-
forms. These connections give new insights into the role of pseudo-differential
operators in the analysis of signals and images in the perspectives of Gabor
transforms and wavelet transforms. From these come the Stockwell transform
that has numerous applications in geophysics and medical imaging. The re-
cently developed mathematical underpinnings of the Stockwell transform will
be highlighted.

1. Pseudo-differential Operators
The starting point is the class of classical pseudo-differential operators in-
troduced by Kohn and Nirenberg [19] and modified almost immediately by
Hörmander [16] about 40 years ago. To wit, let m ∈ R. Then we let Sm
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simply Sm be the set of all C∞ functions σ on R
n × R

n such that for all
multi-indices α and β, there exists a positive constant Cα,β for which

|(Dα
x Dβ

ξ σ)(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|

for all x and ξ in R
n. A function σ in Sm is called a symbol of order m.

Let σ ∈ Sm. Then we define the pseudo-differential operator Tσ on the
Schwartz space S(Rn) by

(Tσϕ)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)ϕ̂(ξ) dξ

for all ϕ in S(Rn) and all x in R
n, where

ϕ̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξϕ(x) dx

for all ξ in R
n. It is easy to prove that Tσ maps S(Rn) into S(Rn) con-

tinuously. The most fundamental properties of pseudo-differential operators
which are useful in the study of partial differential equations are listed as
Theorems 1.1–1.3.

Theorem 1.1. Let σ ∈ S0. Then Tσ, initially defined on S(Rn), can be
uniquely extended to a bounded linear operator from L2(Rn) into L2(Rn).

Theorem 1.2. If σ ∈ Sm, then T ∗
σ = Tτ , where τ ∈ Sm and

τ ∼
∑

µ

(−i)|µ|

µ!
∂µ

x∂µ
ξ σ.

Here, T ∗
σ is the formal adjoint of Tσ.

To recall, the formal adjoint T ∗
σ of Tσ is defined by

(Tσϕ,ψ)L2(Rn) = (ϕ, T ∗
σψ)L2(Rn)

for all ϕ and ψ in L2(Rn), where ( , )L2(Rn) is the inner product in L2(Rn).

The asymptotic expansion τ ∼
∑

µ
(−i)|µ|

µ! ∂µ
x∂µ

ξ σ means that

τ −
∑

|µ|<N

(−i)|µ|

µ!
∂µ

x∂µ
ξ σ ∈ Sm−N

for all positive integers N .

Theorem 1.3. If σ ∈ Sm1 and τ ∈ Sm2 , then TσTτ = Tλ, where λ ∈ Sm1+m2

and

λ ∼
∑

µ

(−i)|µ|

µ!
(∂µ

ξ σ)(∂µ
x τ).
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The asymptotic expansion

λ ∼
∑

µ

(−i)|µ|

µ!
(∂µ

ξ σ)(∂µ
x τ)

means that

λ −
∑

|µ|<N

(−i)|µ|

µ!
(∂µ

ξ σ)(∂µ
x τ) ∈ Sm1+m2−N

for all positive integers N .
All these results are very well known and can be found in the books [17]
by Hörmander [20] by Kumano-go, [23] by Rodino, [29] by Wong and
many others. We can see variants of these results in other settings in this
presentation.

2. Ancestors and Successors
Earliest sources of pseudo-differential operators can be traced to problems
for n-dimensional singular integral equations. The first contributions to the
theory of multi-dimensional singular integrals appear to be those of Tricomi
[27] in 1928. To recall, let (r, θ) be the polar coordinates of a generic point
y = (y1, y2) in R

2 and define for suitable functions ϕ on R
2,

(Pϕ)(x) = lim
ε→0

∫
r>ε

h(θ)
r2

ϕ(x − y) dy, x ∈ R
2.

In general, the integral
∫

R2
h(θ)
r2 ϕ(x − y) dy is not absolutely convergent, but

under the so-called Tricomi condition stipulating that
∫ 2π

0

h(θ) dθ = 0

and appropriate assumptions on h and ϕ, the limit exists and (Pϕ)(x) is
well defined for almost all x in R

2. If we assume for simplicity that h is C∞

on the unit circle S1 with center at the origin, then P is a bounded linear
operator from L2(R2) into L2(R2). Despite unsuccessful attempts by Tricomi
in solving the equation

Pϕ = ψ

by finding another singular integral operator P−1 for which

P−1P = I

and
PP−1 = I,
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where I is the identity operator, we all know nowadays that this can be done
using the Fourier transform. Indeed, P can be regarded as the convolution
operator given by

Pϕ = K ∗ ϕ,

where the singular kernel K given by

K(y) =
h(θ)
r2

, y = (r, θ) ∈ R
2,

has to be suitably seen as a tempered distribution on R
2. Applying the Fourier

transform, we get
(Pϕ)∧(ξ) = σ(ξ)ϕ̂(ξ), ξ ∈ R

2,

where
σ(ξ) = 2πK̂(ξ), ξ ∈ R

2.

In view of the Tricomi condition on h ∈ C∞(S1), σ turns out to be C∞ and
homogeneous of degree 0 on R

2 \ {0}. Hence, apart from the singularity at
the origin, σ is a symbol in S0 depending on ξ only, and with the notation
of the preceding section,

P = Tσ.

Furthermore, if σ is elliptic in the sense that there exists a positive constant
C such that

|σ(ξ)| ≥ C, ξ ∈ R
2,

then σ−1 ∈ S0 and we can define P−1 to be Tσ−1 . Such applications of the
Fourier transform were not known to Tricomi and it took almost 30 years
for mathematicians to come to these simple conclusions. Milestones of the
developments in this direction are the works of Giraud [13] in 1934, Calderón
and Zygmund [4] in 1952 and Mihlin [21] in 1965. Additional references can
be found in the introduction of [21] and the survey paper [24] of Seeley. In
fact, the analysis has been extended to the case when h also depends on x,
i.e., the kernel K is a function of x and y given by

K(x, y) =
h(x, θ)

r2
,

where y = (r, θ). In the final formulation of these results in the setting of R
n,

the symbol σ ∈ S0 is the Fourier transform with respect to y of the kernel
K(x, y) in terms of the singular integral given by

σ(x, ξ) = lim
ε→0

∫
|y|>ε

e−iy·ξK(x, y) dy, x, ξ ∈ R
n.

If σ is elliptic in the sense that there exists a positive constant C such that

|σ(x, ξ)| ≥ C, x, ξ ∈ R
n,
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then we still have
σ−1 ∈ S0.

However, it is important to note that Tσ−1 is no longer the inverse of P in
this case. But, as in Theorem 1.3, we obtain

Tσ−1P = I + K1

and
PTσ−1 = I + K2,

where K1 and K2 are pseudo-differential operators of order −1. When we
transfer the definition of P to a compact manifold M , the operators K1 and
K2 are compact and P is then a Fredholm operator on L2(M). It is remark-
able to note that this very rudimentary symbolic calculus with remainders
of order −1 plays an important role in the proof of the Atiyah–Singer index
formula in [1].

In addition to the obvious extension to an arbitrary order m ∈ R, the most
novel ideas of the Kohn–Nirenberg paper [19] in the context of the theory
of singular integral operators are the precise asymptotic formulas articulated
in Theorems 1.2 and 1.3. Almost immediately after the appearance of the
work of Kohn and Nirenberg is the far-reaching calculus of Hörmander [16]
concerning symbols σ of type (ρ, δ), 0 ≤ δ < ρ ≤ 1. Let us recall that a
function σ in C∞(Rn ×R

n) is a symbol of order m ∈ R and type (ρ, δ) if for
all multi-indices α and β, there exists a positive constant Cα,β such that

|(Dα
x Dβ

ξ σ)(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|β|+δ|α|

for all x and ξ in R
n. Since then, other generalizations and variants of pseudo-

differential operators have appeared. Among many interesting classes is the
very general class of pseudo-differential operators developed by Beals [2] in
1975 in which the Hörmander estimates are replaced by

|(Dα
x Dβ

ξ σ)(x, ξ)| ≤ Cα,βλ(x, ξ)Ψ(x, ξ)−|β|Φ(x, ξ)|α|

for all x and ξ in R
n, where

Ψ(x, ξ) = (Ψ1(x, ξ), Ψ2(x, ξ), . . . , Ψn(x, ξ))

and
Φ(x, ξ) = (Φ1(x, ξ), Φ2(x, ξ), . . . , Φn(x, ξ))

are n-tuples of suitable weight functions, and λ(x, ξ) is now the “order” of the
corresponding pseudo-differential operator. Recasting the calculus of Beals,
another achievement is due to Hörmander [16] using the Weyl expression for
pseudo-differential operators. We refer the readers to [16] for a wide range
of applications to linear partial differential equations. Weyl quantization is
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described in the next section, and for the sake of simplicity, we begin with
a motivation based on symbols in Sm, i.e., Hörmander symbols with ρ = 1
and δ = 0.

3. Weyl Transforms
Let σ ∈ Sm. Then we can associate to it the pseudo-differential operator Tσ,
but Tσ is not the only operator that can be assigned to σ. To see what else
can be done, let us note that for all ϕ in S(Rn) and all x in R

n,

(Tσϕ)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)ϕ̂(ξ) dξ

= (2π)−n

∫
Rn

∫
Rn

ei(x−y)·ξσ(x, ξ)ϕ(y) dy dξ,

where the last integral is to be understood as an oscillatory integral in which
the integral with respect to y has to be performed first. With this formula in
hand, it requires a huge amount of ingenuity (certainly not logic) to see that
we can associate to σ another useful linear operator Wσ on S defined by the
same formula with σ(x, ξ) replaced by σ

(
x+y

2 , ξ
)
. The linear operator Wσ

can be traced back to the work [28] by Hermann Weyl and hence we call Wσ

the Weyl transform associated to the symbol σ. In fact, we have the following
connection between Weyl transforms and pseudo-differential operators.

Theorem 3.1. Let σ ∈ Sm. Then there exists a symbol τ in Sm such that

Tσ = Wτ

and there exists a symbol κ in Sm such that

Wσ = Tκ.

Thus, there is a one-to-one correspondence between pseudo-differential op-
erators and Weyl transforms. We have the following result, which can be
thought of as the fundamental Theorem of pseudo-differential operators.

Theorem 3.2. Let σ ∈ Sm, m ∈ R. Then for all ϕ and ψ in S(Rn),

(Wσϕ,ψ)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)W (ϕ,ψ)(x, ξ) dx dξ,

where W (ϕ,ψ) is the Wigner transform of ϕ and ψ defined by

W (ϕ,ψ)(x, ξ) = (2π)−n/2

∫
Rn

e−iξ·pϕ
(
x +

p

2

)
ψ

(
x − p

2

)
dp

for all x and ξ in R
n.
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The Wigner transform is a very well-behaved bilinear form on L2(Rn) ×
L2(Rn) and it satisfies the so-called Moyal identity or the Plancherel formula
to the effect that

‖W (ϕ,ψ)‖L2(R2n) = ‖ϕ‖L2(Rn)‖ψ‖L2(Rn)

for all ϕ and ψ in L2(Rn).
A tour de force from Theorems 3.1 and 3.2 shows that we can now define
pseudo-differential operators with nonsmooth symbols not in the Hörmander
class Sm. To be specific, we look at symbols in L2(Rn × R

n) only.
Let σ ∈ L2(Rn ×R

n). Then we define the Weyl transform Wσ on L2(Rn) by

(Wσf, g)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)W (f, g)(x, ξ) dx dξ

for all f and g in L2(Rn). Then we have the following analogs of Theo-
rems 1.1–1.3.

Theorem 3.3. Let σ ∈ L2(Rn × R
n). Then Wσ : L2(Rn) → L2(Rn) is a

Hilbert–Schmidt operator.

Theorem 3.4. Let σ ∈ L2(Rn×R
n). Then the adjoint W ∗

σ of Wσ is given by

W ∗
σ = Wσ.

Theorem 3.5. Let σ and τ be symbols in L2(Rn × R
n). Then

WσWτ = Wλ,

where λ ∈ L2(Rn × R
n) and is given by

λ̂ = (2π)−n(σ̂ ∗1/4 τ̂).

Theorem 3.5, which is attributed to Grossmann, Loupias and Stein [15], tells
us that the product of two Weyl transforms with symbols in L2(Rn × R

n)
is again a Weyl transform with symbol in L2(Rn × R

n) and is given by a
twisted convolution. Let us recall that the twisted convolution f ∗1/4 g of two
measurable functions f and g on C

n(= R
n × R

n) is defined by

(f ∗1/4 g)(z) =
∫

Cn

f(z − w)g(w)ei[z,w]/4dw

for all z in C
n, where [z, w] is the symplectic form of z and w given by

[z, w] = 2 Im(z · w).
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See the books [3] by Boggiatto, Buzano and Rodino, [12] by Folland, [25] by
Stein and [30] by Wong for details and related topics.

4. Gabor Transforms
If we make a change of variables in the definition of the Wigner transform,
then we get for all f and g in L2(Rn), and all x and ξ in R

n,

W (f, g)(x, ξ) = 2ne2ix·ξ(Gg̃f)(2x, 2ξ),

where
g̃(x) = g(−x)

for all x in R
n and Gg̃f is the well-known Gabor transform or the short-time

Fourier transform of f with window g̃ given by

(Gg̃f)(x, ξ) = (2π)−n/2

∫
Rn

e−it·ξf(t)g̃(t − x) dt

for all x and ξ in R
n. In image analysis, we can think of (Gg̃f)(x, ξ) as the

spectral content of the image f with frequency ξ at the point x.
Let us now fix a window ϕ in L1(Rn) ∩ L2(Rn) with

∫
Rn ϕ(x) dx = 1. Then

the Gabor transform Gϕf of f is given by

(Gϕf)(x, ξ) = (2π)−n/2(f,MξT−xϕ)L2(Rn)

for all x and ξ in R
n, where Mξ and T−x are the modulation operator and

the translation operator given by

(Mξh)(t) = eit·ξh(t)

and
(T−xh)(t) = h(t − x)

for all measurable functions h on R
n and all t in R

n. Now, for all x and ξ in
R

n, we define the function ϕx,ξ on R
n by

ϕx,ξ = MξT−xϕ.

We call the functions ϕx,ξ, x, ξ ∈ R
n, the Gabor wavelets generated from the

Gabor mother wavelet ϕ by translations and modulations.
The usefulness of the Gabor wavelets in signal and image analysis is en-
hanced by the following resolution of the identity formula, which allows the
reconstruction of a signal or an image from its Gabor spectrum.

Theorem 4.1. For all f in L2(Rn),

f = (2π)−n

∫
Rn

∫
Rn

(f, ϕx,ξ)L2(Rn)ϕx,ξdx dξ.
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Let σ ∈ L2(Rn ×R
n). Then we define the Gabor multiplier Gσ,ϕ : L2(Rn) →

L2(Rn) by

(Gσ,ϕf, g)L2(Rn) =
∫

Rn

∫
Rn

σ(x, ξ)(Gϕf)(x, ξ)(Gϕg)(x, ξ) dx dξ

for all f and g in L2(Rn). Using the Gabor wavelets, we see that Gσ,ϕf is
equal to

(2π)−n

∫
Rn

∫
Rn

σ(x, ξ)(f, ϕx,ξ)L2(Rn)ϕx,ξ dx dξ

for all f in L2(Rn).
Gabor multipliers are also known as localization operators, Daubechies oper-
ators, anti-Wick quantization and Wick quantization. The following results
are the analogs of Theorems 1.1–1.3 for Gabor multipliers.

Theorem 4.2. Let σ ∈ L2(Rn × R
n). Then the Gabor multiplier Gσ,ϕ :

L2(Rn) → L2(Rn) is a Hilbert–Schmidt operator.

Theorem 4.3. Let σ ∈ L2(Rn × R
n). Then the adjoint G∗

σ,ϕ of Gσ,ϕ is
given by

G∗
σ,ϕ = Gσ,ϕ.

Theorem 4.4. Let σ and τ be functions in L2(Rn × R
n). Then

Gσ,ϕGτ,ϕ = Gλ,ϕ,

where
λ̂ = (2π)−n(σ̂ ∗1/2 τ̂).

In Theorem 4.4, we have a new twisted convolution. To wit, the new twisted
convolution f ∗1/2 g of two measurable functions f and g on C

n, is defined
by

(f ∗1/2 g)(z) =
∫

Cn

f(z − w) g(w)e(z·w−|w|2)/2dw

for all z in C
n provided that the integral exists. Theorem 4.4 can be found

in the 2000 paper [10] by Du and Wong.
The interesting feature with Theorem 4.4 is that the new twisted convolution
f ∗1/2 g of two functions f and g in L2(Rn×R

n) need not be in L2(Rn×R
n).

This phenomenon is the motivation for many interesting research papers on
the product of Gabor multipliers. It suffices to mention the works [5] by
Coburn, [7] by Cordero and Gröchenig and [8] by Cordero and Rodino.
What is a Gabor multiplier? Is it something already well known to us? The
answer is yes.
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Theorem 4.5. Let σ ∈ L2(Rn × R
n). Then

Gσ,ϕ = Wσ∗V (ϕ,ϕ),

where
V (ϕ,ϕ)∧ = W (ϕ,ϕ).

References for the materials in this section are the books [9] by Daubechies,
[14] by Gröchenig, [31] by Wong and many others.

5. Wavelet Transforms
Let ϕ ∈ L2(R) be such that ‖ϕ‖2 = 1 and

∫ ∞

−∞

|ϕ̂(ξ)|2
|ξ| dξ < ∞.

Then we call ϕ a mother wavelet and ϕ is said to satisfy the admissibility
condition.
Let ϕ be a mother wavelet. Then for all b in R and a in R\{0}, we can define
the wavelet ϕb,a by

ϕb,a(x) =
1√
|a|

ϕ

(
x − b

a

)
, x ∈ R.

We call ϕb,a the affine wavelet generated from the mother wavelet ϕ by trans-
lation and dilation. To put things in perspective, let b ∈ R and let a ∈ R\{0}.
Then we let Tb be the translation operator as before and Da be the dilation
operator defined by

(Daf)(x) =
√

|a|f(ax)

for all x in R and all measurable functions f on R. So, the wavelet ϕb,a can
be expressed as

ϕb,a = T−bD1/aϕ.

Let ϕ be a mother wavelet. Then the wavelet transform Ωϕf of a function f
in L2(R) is defined to be the function on R × R\{0} by

(Ωϕf)(b, a) = (f, ϕb,a)L2(R)

for all b in R and a in R\{0}. At the heart of the analysis of the wavelet
transform is the following resolution of the identity formula.

Theorem 5.1. Let ϕ be a mother wavelet. Then for all functions f and g in
L2(R),

(f, g)L2(R) =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
(Ωϕf)(b, a)(Ωϕg)(b, a)

db da

a2
,
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where

cϕ = 2π

∫ ∞

−∞

|ϕ̂(ξ)|2
|ξ| dξ.

The resolution of the identity formula leads to the reconstruction formula
which says that

f =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
(f, ϕb,a)L2(R)ϕb,a

db da

a2

for all f in L2(R). In other words, we have a reconstruction formula for the
signal f from a knowledge of its time-scale spectrum.
Let ϕ be a mother wavelet and let σ ∈ L2(R×R). Then we define the wavelet
multiplier Ωσ,ϕ : L2(R) → L2(R) by

Ωσ,ϕf =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
σ(b, a)(f, ϕb,a)L2(R)ϕb,a

db da

a2

for all f in L2(R).
As in the case of the Gabor multipliers, we have the following results.

Theorem 5.2. The wavelet multiplier

Ωσ,ϕ : L2(R) → L2(R)

is a Hilbert–Schmidt operator.

Theorem 5.3. The adjoint Ω∗
σ,ϕ of the wavelet multiplier Ωσ,ϕ is given by

Ω∗
σ,ϕ = Ωσ,ϕ.

What is the product of two wavelet multipliers? The answer is not so simple
and seems to depend on the availability of a useful formula for a wavelet
multiplier. Some technical information in this direction can be found in the
paper [32] by Wong. If

σ(b, a) = α(a)β(b)

for all b in R and all a in R\{0}, then Ωσ,ϕ is a paracommutator in the sense
of Janson and Peetre [18], and Peng and Wong [22]. If σ is a function of a
only, then Ωσ,ϕ is a paraproduct in the sense of Coifman and Meyer [6]. If σ
is a function of b only, then Ωσ,ϕ is a Fourier multiplier.

6. Stockwell Transforms
Let us recall that for a signal f in L2(R), the Gabor transform (Gϕf)(x, ξ)
with respect to the window ϕ gives the time–frequency content of f at time
x and frequency ξ by using the window ϕ at time x. The drawback here is
that a window of fixed width is used for all time x. It is more accurate if
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we can have an adaptive window that gives a wide window for low frequency
and a narrow window for high frequency. That this can be done comes from
our experiences with the wavelet transform. Indeed, we see that the window
ϕb,a is narrow if the scale a is small and the window is wide when the scale
is big.
Now, the Stockwell transform Sϕf with window ϕ of a signal f is defined by

(Sϕf)(x, ξ) = (2π)−1/2|ξ|
∫ ∞

−∞
e−itξf(t)ϕ(ξ(t − x)) dt

for all x and ξ in R. Formally, we note that for all f in L2(R), all x in R and
all ξ in R\{0},

(Sϕf)(x, ξ) = (f, ϕx,ξ)L2(R),

where
ϕx,ξ = (2π)−1/2MξT−xD̃ξϕ.

Here, the dilation operator D̃ξ is defined by

(D̃ξf)(t) = |ξ|f(ξt)

for all t in R and all measurable functions f on R. Besides the modulation,
a notable feature in the Stockwell transform is the normalizing factor in
the dilation operator, which is | · | and not | · |1/2 as in the case of the
wavelet transforms. These features distinguish the Stockwell transform from
the wavelet transforms.
The Stockwell transform has recently been successfully used in seismic waves
[26] by Stockwell, Mansinha and Lowe and in medical imaging [34] by Zhu
and others. An attempt in understanding the mathematical underpinnings
of the Stockwell transform is underway by Wong and Zhu. See [33] in this
direction and we describe some of the results therein.

Theorem 6.1. Let ϕ be a window with
∫ ∞

−∞
ϕ(x)dx = 1.

Then for all f in L1(R) ∩ L2(R),
∫ ∞

−∞
(Sϕf)(x, ξ) dx = f̂(ξ)

for all ξ in R.
See Fig. 1 for an illustration of Theorem 6.1. In view of Theorem 6.1, we have
a reconstruction formula for a signal f in terms of its Stockwell spectrum,
which says that

f = F−1ASϕf,
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Fig. 1 Time–frequency representation of the Stockwell transform: (a) a signal consisting
of multiple frequency components (b) the amplitude of the corresponding Fourier spec-
trum, i.e., |(Ff)(k)| (c) the contour plotting the amplitude of the corresponding Stockwell
transform, i.e., |(Sf)(τ, k)|

where F−1 is the inverse Fourier transform and A is the time average operator
given by

(AF )(ξ) =
∫ ∞

−∞
F (x, ξ) dx

for all ξ in R and all measurable functions F on R × R.
For the second result, we let M be the set of all measurable functions F on
R × R such that ∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
F (x, ξ) dx

∣∣∣∣
2

dξ < ∞.

Then M is an indefinite Hilbert space in which the indefinite inner product
( , )M is given by

(F,G)M = (AF,AG)L2(R)

for all F and G in M .
Then we have a characterization of the Stockwell spectra given by the fol-
lowing theorem.

Theorem 6.2. {Sϕf : f ∈ L2(R)} = M/Z, where

Z = {F : R × R → C : AF = 0}.
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Can we reconstruct a signal from its Stockwell spectrum? The answer is
yes provided that we choose the right window. To do this, we say that a
function ϕ in L2(R) satisfies the admissibility condition if and only if

∫ ∞

−∞

|ϕ̂(ξ − 1)|2
|ξ| dξ < ∞.

For a function in L2(R) satisfying the admissibility condition, we define the
constant cϕ by

cϕ =
∫ ∞

−∞

|ϕ̂(ξ − 1)|2
|ξ| dξ.

Theorem 6.3. Let ϕ be a function in L2(R) with ‖ϕ‖2 = 1 satisfying the
admissibility condition. Then for all f in L2(R),

f =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
(f, ϕx,ξ)L2(R)ϕ

x,ξ dx dξ

|ξ| .

Remark: It is important to note that an admissible wavelet ϕ for the Stock-
well transform has to satisfy the condition

ϕ̂(−1) = 0.

So, the Gaussian window that has been used exclusively for the Stockwell
transform in the literature is not admissible.
This formula and its discretization can be found in the paper [11] by Du,
Wong and Zhu.

L. Rodino,
M.W. Wong
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Sci. École Norm. Sup. Paris 51 (1934), 251–372.
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