Contents

Preface

PART 1: MATHEMATICAL PRELIMINARIES

1 Vectors and Tensors
 1.1. Vector Algebra
 1.2. Coordinate Transformation: Rotation of Axes
 1.3. Second-Rank Tensors
 1.4. Symmetric and Antisymmetric Tensors
 1.5. Prelude to Invariants of Tensors
 1.6. Inverse of a Tensor
 1.7. Additional Proofs
 1.8. Additional Lemmas for Vectors
 1.9. Coordinate Transformation of Tensors
 1.10. Some Identities with Indices
 1.11. Tensor Product
 1.12. Orthonormal Basis
 1.13. Eigenvectors and Eigenvalues
 1.14. Symmetric Tensors
 1.15. Positive Definiteness of a Tensor
 1.16. Antisymmetric Tensors
 1.16.1. Eigenvectors of W
 1.17. Orthogonal Tensors
 1.18. Polar Decomposition Theorem
 1.19. Polar Decomposition: Physical Approach
 1.19.1. Left and Right Stretch Tensors
 1.19.2. Principal Stretches
 1.20. The Cayley–Hamilton Theorem
 1.21. Additional Lemmas for Tensors
 1.22. Identities and Relations Involving ∇ Operator
 1.23. Suggested Reading

page xix
2 Basic Integral Theorems
 2.1. Gauss and Stokes's Theorems
 2.1.1. Applications of Divergence Theorem
 2.2. Vector and Tensor Fields: Physical Approach
 2.3. Surface Integrals: Gauss Law
 2.4. Evaluating Surface Integrals
 2.4.1. Application of the Concept of Flux
 2.5. The Divergence
 2.6. Divergence Theorem: Relation of Surface to Volume
 Integrals
 2.7. More on Divergence Theorem
 2.8. Suggested Reading

3 Fourier Series and Fourier Integrals
 3.1. Fourier Series
 3.2. Double Fourier Series
 3.2.1. Double Trigonometric Series
 3.3. Integral Transforms
 3.4. Dirichlet's Conditions
 3.5. Integral Theorems
 3.6. Convolution Integrals
 3.6.1. Evaluation of Integrals by Use of Convolution
 Theorems
 3.7. Fourier Transforms of Derivatives of \(f(x) \)
 3.8. Fourier Integrals as Limiting Cases of Fourier Series
 3.9. Dirac Delta Function
 3.10. Suggested Reading

PART 2: CONTINUUM MECHANICS

4 Kinematics of Continuum
 4.1. Preliminaries
 4.2. Uniaxial Strain
 4.3. Deformation Gradient
 4.4. Strain Tensor
 4.5. Stretch and Normal Strains
 4.6. Angle Change and Shear Strains
 4.7. Infinitesimal Strains
 4.8. Principal Stretches
 4.9. Eigenvectors and Eigenvalues of Deformation Tensors
 4.10. Volume Changes
 4.11. Area Changes
 4.13. Simple Shear of a Thick Plate with a Central Hole
 4.14. Finite vs. Small Deformations
 4.15. Reference vs. Current Configuration
 4.16. Material Derivatives and Velocity
 4.17. Velocity Gradient
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.18. Deformation Rate and Spin</td>
<td>74</td>
</tr>
<tr>
<td>4.19. Rate of Stretching and Shearing</td>
<td>75</td>
</tr>
<tr>
<td>4.20. Material Derivatives of Strain Tensors: E vs. D</td>
<td>76</td>
</tr>
<tr>
<td>4.21. Rate of F in Terms of Principal Stretches</td>
<td>78</td>
</tr>
<tr>
<td>4.21.1. Spins of Lagrangian and Eulerian Triads</td>
<td>81</td>
</tr>
<tr>
<td>4.22. Additional Connections Between Current and Reference State</td>
<td></td>
</tr>
<tr>
<td>4.23. Transport Formulae</td>
<td>83</td>
</tr>
<tr>
<td>4.24. Material Derivatives of Volume, Area, and Surface Integrals:</td>
<td></td>
</tr>
<tr>
<td>Transport Formulae Revisited</td>
<td>84</td>
</tr>
<tr>
<td>4.25. Analysis of Simple Shearing</td>
<td>85</td>
</tr>
<tr>
<td>4.26. Examples of Particle and Plane Motion</td>
<td>87</td>
</tr>
<tr>
<td>4.27. Rigid Body Motions</td>
<td>88</td>
</tr>
<tr>
<td>4.28. Behavior under Superposed Rotation</td>
<td>89</td>
</tr>
<tr>
<td>4.29. Suggested Reading</td>
<td>90</td>
</tr>
<tr>
<td>5 Kinetics of Continuum</td>
<td>92</td>
</tr>
<tr>
<td>5.1. Traction Vector and Stress Tensor</td>
<td>92</td>
</tr>
<tr>
<td>5.2. Equations of Equilibrium</td>
<td>94</td>
</tr>
<tr>
<td>5.3. Balance of Angular Momentum: Symmetry of σ</td>
<td>95</td>
</tr>
<tr>
<td>5.4. Principal Values of Cauchy Stress</td>
<td>96</td>
</tr>
<tr>
<td>5.5. Maximum Shear Stresses</td>
<td>97</td>
</tr>
<tr>
<td>5.6. Nominal Stress</td>
<td>98</td>
</tr>
<tr>
<td>5.7. Equilibrium in the Reference State</td>
<td>99</td>
</tr>
<tr>
<td>5.8. Work Conjugate Connections</td>
<td>100</td>
</tr>
<tr>
<td>5.9. Stress Deviator</td>
<td>102</td>
</tr>
<tr>
<td>5.10. Frame Indifference</td>
<td>102</td>
</tr>
<tr>
<td>5.11. Continuity Equation and Equations of Motion</td>
<td>107</td>
</tr>
<tr>
<td>5.12. Stress Power</td>
<td>108</td>
</tr>
<tr>
<td>5.13. The Principle of Virtual Work</td>
<td>109</td>
</tr>
<tr>
<td>5.14. Generalized Clapeyron's Formula</td>
<td>111</td>
</tr>
<tr>
<td>5.15. Suggested Reading</td>
<td>111</td>
</tr>
<tr>
<td>6 Thermodynamics of Continuum</td>
<td>113</td>
</tr>
<tr>
<td>6.1. First Law of Thermodynamics: Energy Equation</td>
<td>113</td>
</tr>
<tr>
<td>6.2. Second Law of Thermodynamics: Clausius–Duhem Inequality</td>
<td>114</td>
</tr>
<tr>
<td>6.3. Reversible Thermodynamics</td>
<td>116</td>
</tr>
<tr>
<td>6.3.1. Thermodynamic Potentials</td>
<td>116</td>
</tr>
<tr>
<td>6.3.2. Specific and Latent Heats</td>
<td>118</td>
</tr>
<tr>
<td>6.3.3. Coupled Heat Equation</td>
<td>119</td>
</tr>
<tr>
<td>6.4. Thermodynamic Relationships with p, V, T, and s</td>
<td>120</td>
</tr>
<tr>
<td>6.4.1. Specific and Latent Heats</td>
<td>121</td>
</tr>
<tr>
<td>6.4.2. Coefficients of Thermal Expansion and Compressibility</td>
<td>122</td>
</tr>
<tr>
<td>6.5. Theoretical Calculations of Heat Capacity</td>
<td>123</td>
</tr>
<tr>
<td>6.6. Third Law of Thermodynamics</td>
<td>125</td>
</tr>
<tr>
<td>6.7. Irreversible Thermodynamics</td>
<td>127</td>
</tr>
<tr>
<td>6.7.1. Evolution of Internal Variables</td>
<td>129</td>
</tr>
</tbody>
</table>
6.8. Gibbs Conditions of Thermodynamic Equilibrium
6.9. Linear Thermoelasticity
6.10. Thermodynamic Potentials in Linear Thermoelasticity
6.10.1. Internal Energy
6.10.2. Helmholtz Free Energy
6.10.3. Gibbs Energy
6.10.4. Enthalpy Function
6.11. Uniaxial Loading and Thermoelastic Effect
6.15. Configurational Entropy
6.16. Ideal Solutions
6.17. Regular Solutions for Binary Alloys
6.18. Suggested Reading

7 Nonlinear Elasticity
7.1. Green Elasticity
7.2. Isotropic Green Elasticity
7.3. Constitutive Equations in Terms of B
7.4. Constitutive Equations in Terms of Principal Stretches
7.5. Incompressible Isotropic Elastic Materials
7.6. Elastic Moduli Tensors
7.7. Instantaneous Elastic Moduli
7.8. Elastic Pseudomoduli
7.9. Elastic Moduli of Isotropic Elasticity
7.10. Elastic Moduli in Terms of Principal Stretches
7.11. Suggested Reading

PART 3: LINEAR ELASTICITY

8 Governing Equations of Linear Elasticity
8.1. Elementary Theory of Isotropic Linear Elasticity
8.2. Elastic Energy in Linear Elasticity
8.3. Restrictions on the Elastic Constants
8.3.1. Material Symmetry
8.3.2. Restrictions on the Elastic Constants
8.4. Compatibility Relations
8.5. Compatibility Conditions: Cesàro Integrals
8.6. Beltrami–Michell Compatibility Equations
8.7. Navier Equations of Motion
8.8. Uniqueness of Solution to Linear Elastic Boundary Value Problem
8.8.1. Statement of the Boundary Value Problem
8.8.2. Uniqueness of the Solution
8.9. Potential Energy and Variational Principle
8.9.1. Uniqueness of the Strain Field

8.10. Betti's Theorem of Linear Elasticity
8.11. Plane Strain
 8.11.1. Plane Stress
8.13. Thermal Distortion of a Simple Beam
8.14. Suggested Reading

9 Elastic Beam Problems
 9.1. A Simple 2D Beam Problem
 9.2. Polynomial Solutions to $\nabla^4 \phi = 0$
 9.3. A Simple Beam Problem Continued
 9.3.1. Strains and Displacements for 2D Beams
 9.4. Beam Problems with Body Force Potentials
 9.5. Beam under Fourier Loading
 9.6. Complete Boundary Value Problems for Beams
 9.6.1. Displacement Calculations
 9.7. Suggested Reading

10 Solutions in Polar Coordinates
 10.1. Polar Components of Stress and Strain
 10.2. Plate with Circular Hole
 10.2.1. Far Field Shear
 10.2.2. Far Field Tension
 10.3. Degenerate Cases of Solution in Polar Coordinates
 10.4. Curved Beams: Plane Stress
 10.4.1. Pressurized Cylinder
 10.4.2. Bending of a Curved Beam
 10.5. Axisymmetric Deformations
 10.6. Suggested Reading

11 Torsion and Bending of Prismatic Rods
 11.1. Torsion of Prismatic Rods
 11.2. Elastic Energy of Torsion
 11.3. Torsion of a Rod with Rectangular Cross Section
 11.4. Torsion of a Rod with Elliptical Cross Section
 11.5. Torsion of a Rod with Multiply Connected Cross Sections
 11.5.1. Hollow Elliptical Cross Section
 11.6. Bending of a Cantilever
 11.7. Elliptical Cross Section
 11.8. Suggested Reading

12 Semi-Infinite Media
 12.1. Fourier Transform of Biharmonic Equation
 12.2. Loading on a Half-Plane
 12.3. Half-Plane Loading: Special Case
 12.4. Symmetric Half-Plane Loading
 12.5. Half-Plane Loading: Alternative Approach
 12.6. Additional Half-Plane Solutions
12.6.1. Displacement Fields in Half-Spaces 238
12.6.2. Boundary Value Problem 239
12.6.3. Specific Example 240
12.7. Infinite Strip 242
12.7.1. Uniform Loading: \(-a \leq x \leq a\) 243
12.7.2. Symmetrical Point Loads 244
12.8. Suggested Reading 245

13 Isotropic 3D Solutions 246
13.1. Displacement-Based Equations of Equilibrium 246
13.2. Boussinesq–Papkovich Solutions 247
13.3. Spherically Symmetrical Geometries 248
13.3.1. Internally Pressurized Sphere 249
13.4. Pressurized Sphere: Stress-Based Solution 251
13.4.1. Pressurized Rigid Inclusion 252
13.4.2. Disk with Circumferential Shear 253
13.4.3. Sphere Subject to Temperature Gradients 254
13.5. Spherical Indentation 254
13.5.1. Displacement-Based Equilibrium 255
13.5.2. Strain Potentials 256
13.5.3. Point Force on a Half-Plane 257
13.5.4. Hemispherical Load Distribution 258
13.5.5. Indentation by a Spherical Ball 259
13.6. Point Forces on Elastic Half-Space 261
13.7. Suggested Reading 263

14 Anisotropic 3D Solutions 264
14.1. Point Force 264
14.2. Green's Function 264
14.3. Isotropic Green’s Function 268
14.4. Suggested Reading 270

15 Plane Contact Problems 271
15.1. Wedge Problem 271
15.2. Distributed Contact Forces 274
15.2.1. Uniform Contact Pressure 275
15.2.2. Uniform Tangential Force 277
15.3. Displacement-Based Contact: Rigid Flat Punch 277
15.4. Suggested Reading 279

16 Deformation of Plates 280
16.1. Stresses and Strains of Bent Plates 280
16.2. Energy of Bent Plates 281
16.3. Equilibrium Equations for a Plate 282
16.4. Shear Forces and Bending and Twisting Moments 285
16.5. Examples of Plate Deformation 287
16.5.1. Clamped Circular Plate 287
16.5.2. Circular Plate with Simply Supported Edges 288
16.5.3. Circular Plate with Concentrated Force 288
16.5.4. Peeled Surface Layer 288
16.6. Rectangular Plates 289
 16.6.1. Uniformly Loaded Rectangular Plate 290
16.7. Suggested Reading 291

PART 4: MICROMECHANICS

17 Dislocations and Cracks: Elementary Treatment 293
 17.1. Dislocations 293
 17.1.1. Derivation of the Displacement Field 294
 17.2. Tensile Cracks 295
 17.3. Suggested Reading 298

18 Dislocations in Anisotropic Media 299
 18.1. Dislocation Character and Geometry 299
 18.2. Dislocations in Isotropic Media 302
 18.2.1. Infinitely Long Screw Dislocations 302
 18.2.2. Infinitely Long Edge Dislocations 303
 18.2.3. Infinitely Long Mixed Segments 303
 18.3. Planar Geometric Theorem 305
 18.4. Applications of the Planar Geometric Theorem 308
 18.4.1. Angular Dislocations 311
 18.5. A 3D Geometrical Theorem 312
 18.6. Suggested Reading 314

19 Cracks in Anisotropic Media 315
 19.1. Dislocation Mechanics: Reviewed 315
 19.2. Freely Slipping Crack 316
 19.3. Crack Extension Force 319
 19.4. Crack Faces Loaded by Trawctions 320
 19.5. Stress Intensity Factors and Crack Extension Force 322
 19.5.1. Computation of the Crack Extension Force 323
 19.6. Crack Tip Opening Displacement 325
 19.7. Dislocation Energy Factor Matrix 325
 19.8. Inversion of a Singular Integral Equation 328
 19.9. 2D Anisotropic Elasticity – Stroh Formalism 329
 19.9.1. Barnett–Lothe Tensors 332
 19.10. Suggested Reading 334

20 The Inclusion Problem 335
 20.1. The Problem 335
 20.2. Eshelby's Solution Setup 336
 20.3. Calculation of the Constrained Fields: u^c, e^c, and σ^c 338
 20.4. Components of the Eshelby Tensor for Ellipsoidal Inclusion 341
 20.5. Elastic Energy of an Inclusion 343
 20.6. Inhomogeneous Inclusion: Uniform Transformation Strain 343
 20.7. Nonuniform Transformation Strain Inclusion Problem 345
 20.7.1. The Cases $M = 0, 1$ 349
20.8. Inclusions in Isotropic Media
 20.8.1. Constrained Elastic Field 350
 20.8.2. Field in the Matrix 350
 20.8.3. Field at the Interface 351
 20.8.4. Isotropic Spherical Inclusion 352
20.9. Suggested Reading 353

21 Forces and Energy in Elastic Systems 354
 21.2. Forces of Translation 355
 21.2.1. Force on an Interface 357
 21.2.2. Finite Deformation Energy Momentum Tensor 359
 21.3. Interaction Between Defects and Loading Mechanisms 360
 21.3.1. Interaction Between Dislocations and Inclusions 362
 21.3.2. Force on a Dislocation Segment 364
 21.4. Elastic Energy of a Dislocation 365
 21.5. In-Plane Stresses of Straight Dislocation Lines 366
 21.6. Chemical Potential 367
 21.6.1. Force on a Defect due to a Free Surface 369
 21.7. Applications of the J Integral 371
 21.7.1. Force on a Clamped Crack 372
 21.7.2. Application of the Interface Force to Precipitation 372
 21.8. Suggested Reading 374

22 Micropolar Elasticity 375
 22.1. Introduction 375
 22.2. Basic Equations of Couple-Stress Elasticity 376
 22.3. Displacement Equations of Equilibrium 377
 22.4. Correspondence Theorem of Couple-Stress Elasticity 378
 22.5. Plane Strain Problems of Couple-Stress Elasticity 379
 22.5.1. Mindlin's Stress Functions 380
 22.6. Edge Dislocation in Couple-Stress Elasticity 381
 22.6.1. Strain Energy 382
 22.7. Edge Dislocation in a Hollow Cylinder 384
 22.8. Governing Equations for Antiplane Strain 386
 22.8.1. Expressions in Polar Coordinates 388
 22.8.2. Correspondence Theorem for Antiplane Strain 389
 22.9. Antiplane Shear of Circular Annulus 390
 22.10. Screw Dislocation in Couple-Stress Elasticity 391
 22.10.1. Strain Energy 392
 22.11. Configurational Forces in Couple-Stress Elasticity 392
 22.11.1. Reciprocal Properties 393
 22.11.2. Energy due to Internal Sources of Stress 394
 22.11.3. Energy due to Internal and External Sources of Stress 394
 22.11.4. The Force on an Elastic Singularity 395
22.12. Energy-Momentum Tensor of a Couple-Stress Field 396
22.13. Basic Equations of Micropolar Elasticity 398
22.14. Noether's Theorem of Micropolar Elasticity 400
22.15. Conservation Integrals in Micropolar Elasticity 403
22.16. Conservation Laws for Plane Strain Micropolar Elasticity 404
22.17. M Integral of Micropolar Elasticity 404
22.18. Suggested Reading 406

PART 5: THIN FILMS AND INTERFACES

23 Dislocations in Bimaterials 407
23.1. Introduction 407
23.2. Screw Dislocation Near a Bimaterial Interface 407
23.2.1. Interface Screw Dislocation 409
23.2.2. Screw Dislocation in a Homogeneous Medium 409
23.2.3. Screw Dislocation Near a Free Surface 409
23.2.4. Screw Dislocation Near a Rigid Boundary 410
23.3. Edge Dislocation (b_x) Near a Bimaterial Interface 410
23.3.1. Interface Edge Dislocation 415
23.3.2. Edge Dislocation in an Infinite Medium 417
23.3.3. Edge Dislocation Near a Free Surface 417
23.3.4. Edge Dislocation Near a Rigid Boundary 418
23.4. Edge Dislocation (b_y) Near a Bimaterial Interface 419
23.4.1. Interface Edge Dislocation 420
23.4.2. Edge Dislocation in an Infinite Medium 422
23.4.3. Edge Dislocation Near a Free Surface 422
23.4.4. Edge Dislocation Near a Rigid Boundary 423
23.5. Strain Energy of a Dislocation Near a Bimaterial Interface 423
23.5.1. Strain Energy of a Dislocation Near a Free Surface 426
23.6. Suggested Reading 427

24 Strain Relaxation in Thin Films 428
24.1. Dislocation Array Beneath the Free Surface 428
24.2. Energy of a Dislocation Array 430
24.3. Strained-Layer Epitaxy 431
24.4. Conditions for Dislocation Array Formation 432
24.5. Frank and van der Merwe Energy Criterion 434
24.6. Gradual Strain Relaxation 436
24.7. Stability of Array Configurations 439
24.8. Stronger Stability Criteria 439
24.9. Further Stability Bounds 441
24.9.1. Lower Bound 441
24.9.2. Upper Bound 443
24.10. Suggested Reading 446

25 Stability of Planar Interfaces 447
25.1. Stressed Surface Problem 447
25.2. Chemical Potential 449
25.3. Surface Diffusion and Interface Stability
25.4. Volume Diffusion and Interface Stability
25.5. 2D Surface Profiles and Surface Stability
25.6. Asymptotic Stresses for 1D Surface Profiles
25.7. Suggested Reading

PART 6: PLASTICITY AND VISCOPLASTICITY

26 Phenomenological Plasticity
26.1. Yield Criteria for Multiaxial Stress States
26.2. Von Mises Yield Criterion
26.3. Tresca Yield Criterion
26.4. Mohr–Coulomb Yield Criterion
 26.4.1. Drucker–Prager Yield Criterion
26.5. Gurson Yield Criterion for Porous Metals
26.6. Anisotropic Yield Criteria
26.7. Elastic-Plastic Constitutive Equations
26.8. Isotropic Hardening
 26.8.1. J\textsubscript{2} Flow Theory of Plasticity
26.9. Kinematic Hardening
 26.9.1. Linear and Nonlinear Kinematic Hardening
26.10. Constitutive Equations for Pressure-Dependent Plasticity
26.11. Nonassociative Plasticity
26.13. Rate-Dependent Plasticity
 26.14.1. Rate-Type Formulation of Deformation Theory
26.15. J\textsubscript{2} Corner Theory
26.16. Rate-Dependent Flow Theory
 26.16.1. Multiplicative Decomposition \(F = F^e \cdot F^p \)
26.17. Elastic and Plastic Constitutive Contributions
 26.17.1. Rate-Dependent J\textsubscript{2} Flow Theory
26.18. A Rate Tangent Integration
 26.19.1. Ideally Plastic Material
 26.19.2. Incompressible Linearly Hardening Material
26.20. Suggested Reading

27 Micromechanics of Crystallographic Slip
27.1. Early Observations
27.2. Dislocations
 27.2.1. Some Basic Properties of Dislocations in Crystals
 27.2.2. Strain Hardening, Dislocation Interactions, and
 Dislocation Multiplication
27.3. Other Strengthening Mechanisms
27.4. Measurements of Latent Hardening
27.5. Observations of Slip in Single Crystals and Polycrystals at
 Modest Strains

Contents
450
451
455
457
459
461
462
463
465
467
468
469
470
471
473
474
475
477
478
480
480
482
484
485
486
487
489
489
491
492
493
495
497
498
501
502
502
508
511
514
517
519
523
Contents

27.6. Deformation Mechanisms in Nanocrystalline Grains
27.6.1. Background: AKK Model
27.6.2. Perspective on Discreteness
27.6.3. Dislocation and Partial Dislocation Slip Systems
27.7. Suggested Reading

28 Crystal Plasticity
28.1. Basic Kinematics
28.2. Stress and Stress Rates
28.2.1. Resolved Shear Stress
28.2.2. Rate-Independent Strain Hardening
28.3. Convected Elasticity
28.4. Rate-Dependent Slip
28.4.1. A Rate Tangent Modulus
28.5. Crystalline Component Forms
28.5.1. Additional Crystalline Forms
28.5.2. Component Forms on Laboratory Axes
28.6. Suggested Reading

29 The Nature of Crystalline Deformation: Localized Plastic Deformation
29.1. Perspectives on Nonuniform and Localized Plastic Flow
29.1.1. Coarse Slip Bands and Macroscopic Shear Bands in Simple Crystals
29.1.2. Coarse Slip Bands and Macroscopic Shear Bands in Ordered Crystals
29.2. Localized Deformation in Single Slip
29.2.1. Constitutive Law for the Single Slip Crystal
29.2.2. Plastic Shearing with Non-Schmid Effects
29.2.3. Conditions for Localization
29.2.4. Expansion to the Order of σ
29.2.5. Perturbations about the Slip and Kink Plane Orientations
29.2.6. Isotropic Elastic Moduli
29.2.7. Particular Cases for Localization
29.3. Localization in Multiple Slip
29.3.1. Double Slip Model
29.3.2. Constitutive Law for the Double Slip Crystal
29.4. Numerical Results for Crystalline Deformation
29.4.1. Additional Experimental Observations
29.4.2. Numerical Observations
29.5. Suggested Reading

30 Polycrystal Plasticity
30.1. Perspectives on Polycrystalline Modeling and Texture Development
30.2. Polycrystal Model
30.3. Extended Taylor Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.6</td>
<td>525</td>
</tr>
<tr>
<td>27.6.1</td>
<td>530</td>
</tr>
<tr>
<td>27.6.2</td>
<td>535</td>
</tr>
<tr>
<td>27.6.3</td>
<td>535</td>
</tr>
<tr>
<td>27.7</td>
<td>537</td>
</tr>
<tr>
<td>28</td>
<td>538</td>
</tr>
<tr>
<td>28.1</td>
<td>538</td>
</tr>
<tr>
<td>28.2</td>
<td>541</td>
</tr>
<tr>
<td>28.2.1</td>
<td>542</td>
</tr>
<tr>
<td>28.2.2</td>
<td>544</td>
</tr>
<tr>
<td>28.3</td>
<td>545</td>
</tr>
<tr>
<td>28.4</td>
<td>547</td>
</tr>
<tr>
<td>28.4.1</td>
<td>548</td>
</tr>
<tr>
<td>28.5</td>
<td>550</td>
</tr>
<tr>
<td>28.5.1</td>
<td>553</td>
</tr>
<tr>
<td>28.5.2</td>
<td>555</td>
</tr>
<tr>
<td>28.6</td>
<td>555</td>
</tr>
<tr>
<td>29</td>
<td>557</td>
</tr>
<tr>
<td>29.1</td>
<td>557</td>
</tr>
<tr>
<td>29.1.1</td>
<td>558</td>
</tr>
<tr>
<td>29.1.2</td>
<td>559</td>
</tr>
<tr>
<td>29.2</td>
<td>560</td>
</tr>
<tr>
<td>29.2.1</td>
<td>560</td>
</tr>
<tr>
<td>29.2.2</td>
<td>560</td>
</tr>
<tr>
<td>29.2.3</td>
<td>563</td>
</tr>
<tr>
<td>29.2.4</td>
<td>565</td>
</tr>
<tr>
<td>29.2.5</td>
<td>567</td>
</tr>
<tr>
<td>29.2.6</td>
<td>570</td>
</tr>
<tr>
<td>29.2.7</td>
<td>571</td>
</tr>
<tr>
<td>29.3</td>
<td>576</td>
</tr>
<tr>
<td>29.3.1</td>
<td>576</td>
</tr>
<tr>
<td>29.3.2</td>
<td>576</td>
</tr>
<tr>
<td>29.4</td>
<td>580</td>
</tr>
<tr>
<td>29.4.1</td>
<td>580</td>
</tr>
<tr>
<td>29.4.2</td>
<td>582</td>
</tr>
<tr>
<td>29.5</td>
<td>584</td>
</tr>
<tr>
<td>30</td>
<td>586</td>
</tr>
<tr>
<td>30.1</td>
<td>586</td>
</tr>
<tr>
<td>30.2</td>
<td>588</td>
</tr>
<tr>
<td>30.3</td>
<td>590</td>
</tr>
</tbody>
</table>
30.4. Model Calculational Procedure
 30.4.1. Texture Determinations
 30.4.2. Yield Surface Determination
30.5. Deformation Theories and Path-Dependent Response
 30.5.1. Specific Model Forms
 30.5.2. Alternative Approach to a Deformation Theory
 30.5.3. Nonproportional Loading
30.6. Suggested Reading

31 Laminate Plasticity
 31.1. Laminate Model
 31.2. Additional Kinematical Perspective
 31.3. Final Constitutive Forms
 31.3.1. Rigid-Plastic Laminate in Single Slip
 31.4. Suggested Reading

PART 7: BIOMECHANICS
32 Mechanics of a Growing Mass
 32.1. Introduction
 32.2. Continuity Equation
 32.2.1. Material Form of Continuity Equation
 32.2.2. Quantities per Unit Initial and Current Mass
 32.3. Reynolds Transport Theorem
 32.4. Momentum Principles
 32.4.1. Rate-Type Equations of Motion
 32.5. Energy Equation
 32.5.1. Material Form of Energy Equation
 32.6. Entropy Equation
 32.6.1. Material Form of Entropy Equation
 32.6.2. Combined Energy and Entropy Equations
 32.7. General Constitutive Framework
 32.7.1. Thermodynamic Potentials per Unit Initial Mass
 32.7.2. Equivalence of the Constitutive Structures
 32.8. Multiplicative Decomposition of Deformation Gradient
 32.8.1. Strain and Strain-Rate Measures
 32.9. Density Expressions
 32.10. Elastic Stress Response
 32.11. Partition of the Rate of Deformation
 32.12. Elastic Moduli Tensor
 32.12.1. Elastic Moduli Coefficients
 32.13. Elastic Strain Energy Representation
 32.14. Evolution Equation for Stretch Ratio
 32.15. Suggested Reading

33 Constitutive Relations for Membranes
 33.1. Biological Membranes
 33.2. Membrane Kinematics
33.3. Constitutive Laws for Membranes
33.4. Limited Area Compressibility
33.5. Simple Triangular Networks
33.6. Suggested Reading

PART 8: SOLVED PROBLEMS
34 Solved Problems for Chapters 1–33

Bibliography
Index