Contents

Pref	Preface			
List	of abbreviations	xv		
A gu	uide to the book	xxiii		
1	Introduction	1		
1.1	The vision of Ambient Intelligence	1		
1.2	Application examples	3		
1.3	Types of applications	6		
1.4	Challenges for WSNs	7		
	1.4.1 Characteristic requirements	7		
	1.4.2 Required mechanisms	9		
1.5	Why are sensor networks different?	10		
	1.5.1 Mobile ad hoc networks and wireless sensor networks	10		
	1.5.2 Fieldbuses and wireless sensor networks	12 13		
1.6	Enabling technologies for wireless sensor networks	13		
PA	RT I ARCHITECTURES	15		
2	Single-node architecture	17		
2.1	Hardware components	18		
	2.1.1 Sensor node hardware overview	18		
	2.1.2 Controller	19		
	2.1.3 Memory	21		
	2.1.4 Communication device	21		
	2.1.5 Sensors and actuators	31		
	2.1.6 Power supply of sensor nodes	32		
2.2	Energy consumption of sensor nodes	36		
	2.2.1 Operation states with different power consumption	36		
	2.2.2 Microcontroller energy consumption	38		
	2.2.3 Memory	39		
	2.2.4 Radio transceivers	4(

	2.2.5	Relationship between computation and communication	44
	2.2.6	Power consumption of sensor and actuators	44
2.3	Operati	ing systems and execution environments	45
	2.3.1	Embedded operating systems	45
	2.3.2	Programming paradigms and application programming interfaces	45
	2.3.3	Structure of operating system and protocol stack	47
	2.3.4	Dynamic energy and power management	48
	2.3.5	Case Study: TinyOS and nesC	50
	2.3.6	Other examples	53
2.4	Some 6	examples of sensor nodes	54
	2.4.1	The "Mica Mote" family	54
	2.4.2	EYES nodes	54
	2.4.3	BTnodes	54
	2.4.4	Scatterweb	54
	2.4.5	Commercial solutions	55
2.5	Conclu	sion	56
3	Netwo	rk architecture	59
3.1	Sensor	network scenarios	60
	3.1.1	Types of sources and sinks	60
	3.1.2	Single-hop versus multihop networks	60
	3.1.3	Multiple sinks and sources	62
	3.1.4	Three types of mobility	62
3.2		ization goals and figures of merit	63
		Quality of service	64
	3.2,2	Energy efficiency	65
	3.2.3	Scalability	66
	3.2.4	Robustness	67
3.3	Design	principles for WSNs	67
	3.3.I	Distributed organization	67
	3.3.2	In-network processing	67
	3.3.3	Adaptive fidelity and accuracy	70
	3.3,4	Data centricity	70
	3.3.5	Exploit location information	73
	3.3.6	Exploit activity patterns	73
	3.3.7	Exploit heterogeneity	73
	3.3.8	Component-based protocol stacks and cross-layer optimization	74
3.4	Service	e interfaces of WSNs	74
	3.4.1	Structuring application/protocol stack interfaces	74
	3.4.2	Expressibility requirements for WSN service interfaces	76
	3.4.3	Discussion	77
3.5	Gatew	yay concepts	78
	3.5.1	The need for gateways	78
	3.5.2	WSN to Internet communication	79
	3.5.3	Internet to WSN communication	80
	3.5.4	WSN tunneling	81
3.6	Concl	usion	81

PA]	RT II	COMMUNICATION PROTOCOLS	83
4	Physic	al layer	85
4.1	Introdu	action	85
4.2		ss channel and communication fundamentals	86
	4.2.1	Frequency allocation	86
	4.2.2	Modulation and demodulation	88
	4.2.3	Wave propagation effects and noise	90
	4.2.4	Channel models	96
	4.2.5	Spread-spectrum communications	98
	4.2.6	Packet transmission and synchronization	100
	4.2.7	Quality of wireless channels and measures for improvement	102
4.3	Physic	al layer and transceiver design considerations in WSNs	103
	4.3.1	Energy usage profile	103
	4.3.2	Choice of modulation scheme	104
	4.3.3	Dynamic modulation scaling	108
	4.3.4	Antenna considerations	108
4.4	Furthe	r reading	109
5	MAC	protocols	111
5.1	Funda	mentals of (wireless) MAC protocols	112
2.1	5.1.1	Requirements and design constraints for wireless MAC protocols	112
	5.1.2	Important classes of MAC protocols	114
	5.1.3	MAC protocols for wireless sensor networks	119
5.2		uty cycle protocols and wakeup concepts	120
	5.2.1	Sparse topology and energy management (STEM)	121
	5.2.2	S-MAC	123
	5.2.3	The mediation device protocol	126
	5.2.4	Wakeup radio concepts	127
	5.2.5	Further reading	128
5.3	Conte	ntion-based protocols	129
	5.3.1	CSMA protocols	129
	5.3.2	PAMAS	131
	5.3.3	Further solutions	132
5.4	Sched	ule-based protocols	133
	5.4.1	LEACH	133
	5.4.2	SMACS	135
	<i>5.4.3</i>	Traffic-adaptive medium access protocol (TRAMA)	137
	5.4.4	Further solutions	139
5.5	The II	EEE 802.15.4 MAC protocol	139
	5.5.1	Network architecture and types/roles of nodes	140
	5.5.2	Superframe structure	141
	5.5.3	GTS management	141
	5.5.4	Data transfer procedures	142
	5.5.5	Slotted CSMA-CA protocol	142
	5.5.6	Nonbeaconed mode	144
	5.5.7	Further reading	145
5.6		about IEEE 802.11 and bluetooth?	145
5.7		er reading	146
5.8	Concl	neion	148

6	Link-layer protocols	149
6.1	Fundamentals: tasks and requirements	150
6.2	Error control	151
	6.2.1 Causes and characteristics of transmission errors	151
	6.2.2 ARQ techniques	152
	6.2.3 FEC techniques	158
	6.2.4 Hybrid schemes	163
	6.2.5 Power control	165
	6.2.6 Further mechanisms to combat errors	166
	6.2.7 Error control: summary	167
6.3	Framing	167
	6.3.1 Adaptive schemes	170
	6.3.2 Intermediate checksum schemes	172
	6.3.3 Combining packet-size optimization and FEC	173
	6.3.4 Treatment of frame headers	174
	6.3.5 Framing: summary	174
6.4	Link management	174
	6.4.1 Link-quality characteristics	175
	6.4.2 Link-quality estimation	177
6.5	Summary	179
7	Naming and addressing	181
7.1	Fundamentals	
	7.1.1 Use of addresses and names in (sensor) networks	182
	7.1.2 Address management tasks	183
	7.1.3 Uniqueness of addresses	184
	7.1.4 Address allocation and assignment	184
	7.1.5 Addressing overhead	185
7.2	Address and name management in wireless sensor networks	186
7.3	Assignment of MAC addresses	186
	7.3.1 Distributed assignment of networkwide addresses	187
7.4	Distributed assignment of locally unique addresses	189
	7.4.1 Address assignment algorithm	189
	7.4.2 Address selection and representation	191
	7.4.3 Further schemes	194
7.5	Content-based and geographic addressing	194
	7.5.1 Content-based addressing	194
	7.5.2 Geographic addressing	198
7.6	Summary	198
8	Time synchronization	201
	•	
8.1		201
	8.1.1 The need for time synchronization in wireless sensor networks	202
	8.1.2 Node clocks and the problem of accuracy	203
	8.1.3 Properties and structure of time synchronization algorithms	204
0.0	8.1.4 Time synchronization in wireless sensor networks	206
8.2		207
	8.2.1 Lightweight time synchronization protocol (LTS)	207

	8.2.2 How to increase accuracy and estimate drift	212
	8.2.3 Timing-sync protocol for sensor networks (TPSN)	214
8.3	Protocols based on receiver/receiver synchronization	217
0.5	8.3.1 Reference broadcast synchronization (RBS)	217
	8.3.2 Hierarchy referencing time synchronization (HRTS)	223
8.4	Further reading	226
0,-	Turmor reasons	
9	Localization and positioning	231
9.1	Properties of localization and positioning procedures	232
9.2	Possible approaches	233
	9.2.1 Proximity	233
	9.2.2 Trilateration and triangulation	234
	9.2.3 Scene analysis	237
9.3	Mathematical basics for the lateration problem	237
	9.3.1 Solution with three anchors and correct distance values	238
	9.3.2 Solving with distance errors	238
9.4	Single-hop localization	240
	9.4.1 Active Badge	240
	9.4.2 Active office	240
	9.4.3 RADAR	240
	9.4.4 Cricket	241
	9.4.5 Overlapping connectivity	241
	9.4.6 Approximate point in triangle	242
	9.4.7 Using angle of arrival information	243
9.5	Positioning in multihop environments	243
	9.5.1 Connectivity in a multihop network	244
	9.5.2 Multihop range estimation	244
	9.5.3 Iterative and collaborative multilateration	245
	9.5.4 Probabilistic positioning description and propagation	247
9.6	Impact of anchor placement	247
9.7	Further reading	248
9.8	Conclusion	249
10	Topology control	251
10.1	Motivation and basic ideas	251
	10.1.1 Options for topology control	252
	10.1.2 Aspects of topology-control algorithms	254
10.2	Controlling topology in flat networks - Power control	256
	10.2.1 Some complexity results	256
	10.2.2 Are there magic numbers? – bounds on critical parameters	257
	10.2.3 Some example constructions and protocols	259
	10.2.4 Further reading on flat topology control	265
10.3	Hierarchical networks by dominating sets	266
	10.3.1 Motivation and definition	266
	10.3.2 A hardness result	266
	10.3.3 Some ideas from centralized algorithms	267
	10.3.4 Some distributed approximations	270
	10.3.5 Further reading	273
10.4	Hierarchical networks by clustering	274

	10.4.1 Definition of clusters	274
	10.4.2 A basic idea to construct independent sets	277
	10.4.3 A generalization and some performance insights	278
	10.4.4 Connecting clusters	278
	10.4.5 Rotating clusterheads	279
	10.4.6 Some more algorithm examples	280
	10.4.7 Multihop clusters	281
	10.4.8 Multiple layers of clustering	283
	10.4.9 Passive clustering	284
	10.4.10 Further reading	284
10.5	Combining hierarchical topologies and power control	285
	10.5.1 Pilot-based power control	285
	10.5.2 Ad hoc Network Design Algorithm (ANDA)	285
	10.5.3 CLUSTERPOW	286
10.6	Adaptive node activity	286
	10.6.1 Geographic Adaptive Fidelity (GAF)	286
	10.6.2 Adaptive Self-Configuring sEnsor Networks' Topologies (ASCENT)	287
	10.6.3 Turning off nodes on the basis of sensing coverage	288
10.7	Conclusions	288
11	Routing protocols	289
11.1	The many faces of forwarding and routing	289
	Gossiping and agent-based unicast forwarding	292
1	11.2.1 Basic idea	292
	11.2.2 Randomized forwarding	292
	11.2.3 Random walks	293
	11.2.4 Further reading	293 294
113	Energy-efficient unicast	295
11.5	11.3.1 Overview	295
	11.3.2 Some example unicast protocols	293 297
	11.3.3 Further reading	301
	11.3.4 Multipath unicast routing	301
	11.3.5 Further reading	
11 /	Broadcast and multicast	304
11,-7	11.4.1 Overview	305
	11.4.2 Source-based tree protocols	305
	11.4.3 Shared, core-based tree protocols	308
	11.4.4 Mesh-based protocols	314
	11.4.5 Further reading on broadcast and multicast	314
115	Geographic routing	315
11.2		316
	11.5.1 Basics of position-based routing	316
	11.5.2 Geocasting	323
116	11.5.3 Further reading on geographic routing Mobile nodes	326
11.0	11.6.1 Mobile sinks	328
		328
	11.6.2 Mobile data collectors	328
117	11.6.3 Mobile regions Conclusions	329
11./	CORCIUSIONS	329

12	Data-centric and content-based networking	331
12.	1 Introduction	331
	12.1.1 The publish/subscribe interaction paradigm	331
	12.1.2 Addressing data	332
	12.1.3 Implementation options	333
	12.1.4 Distribution versus gathering of data – In-network processing	334
12.	2 Data-centric routing	335
	12.2.1 One-shot interactions	335
	12.2.2 Repeated interactions	337
	12.2.3 Further reading	340
12.	.3 Data aggregation	341
	12.3.1 Overview	341
	12.3.2 A database interface to describe aggregation operations	342
	12.3.3 Categories of aggregation operations	343
	12.3.4 Placement of aggregation points	345
	12.3.5 When to stop waiting for more data	345
	12.3.6 Aggregation as an optimization problem	347
	12.3.7 Broadcasting an aggregated value	347
	12.3.8 Information-directed routing and aggregation	350
	12.3.9 Some further examples	352
	12.3.10 Further reading on data aggregation	355
	.4 Data-centric storage	355 357
12	.5 Conclusions	331
13	Transport layer and quality of service	359
13	.1 The transport layer and QoS in wireless sensor networks	359
	13.1.1 Quality of service/reliability	360
	13.1.2 Transport protocols	361
13	.2 Coverage and deployment	362
	13.2.1 Sensing models	362
	13.2.2 Coverage measures	364
	13.2.3 Uniform random deployments: Poisson point processes	365
	13.2.4 Coverage of random deployments: Boolean sensing model	366 368
	13.2.5 Coverage of random deployments: general sensing model	
	13.2.6 Coverage determination	369 374
	13.2.7 Coverage of grid deployments	374
	13.2.8 Further reading	375 376
13	3.3 Reliable data transport	370 377
	13.3.1 Reliability requirements in sensor networks	378
13	4.4 Single packet delivery	379
	13.4.1 Using a single path	384
	13.4.2 Using multiple paths	388
	13.4.3 Multiple receivers	389
1.0	13.4.4 Summary	389
13	3.5 Block delivery	389
	13.5.1 PSFQ: block delivery in the sink-to-sensors case	395
	13.5.2 RMST: block delivery in the sensors-to-sink case	397
	13.5.3 What about TCP? 13.5.4 Further reading	399
	1.1.14 PHIME RUMEY	

13.6	Conges	stion control and rate control	400
	-	Congestion situations in sensor networks	400
	13.6.2	Mechanisms for congestion detection and handling	402
		Protocols with rate control	403
	13.6.4	The CODA congestion-control framework	408
	13.6.5	Further reading	411
14	Advan	ced application support	413
14.1	Advano	ced in-network processing	413
		Going beyond mere aggregation of data	413
	14.1.2	Distributed signal processing	414
	14.1.3	Distributed source coding	416
	14.1.4	Network coding	420
	14.1.5	Further issues	421
14.2	Securit	у	422
	14.2.1	Fundamentals	422
	14.2.2	Security considerations in wireless sensor networks	423
	14.2.3	Denial-of-service attacks	423
	14.2.4	Further reading	425
14.3	Applic	ation-specific support	425
	14.3.1	Target detection and tracking	426
	14.3.2	Contour/edge detection	429
	14.3.3	Field sampling	432
Bibl	iograph	y	437
Inde	×		481

•